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Abstract Single-particle resonance states of 122Zr are studied in the real stabilization method within the

framework of relativistic mean field theory. Two efficient methods are adopted to extract the resonance energy

and width of 122Zr. The results are compared with those obtained from the analytic continuation in the

coupling approach and scattering phase-shift methods.
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1 Introduction

The development of radioactive ion beam facilities

have made it possible to study exotic nuclei. Most

of these nuclei are loosely bound and often exhibit

resonances with a pronounced single-particle charac-

ter since the Fermi surface approaches the contin-

uum. Since resonances have a great effect on the

formation of halo and giant halo[1], much effort has

been devoted to the study of resonance state in nu-

clei. So far, several methods have been used to

investigate the property of resonance, including R-

matrix[2], K-matrix[3], S-matrix[4] and several bound-

state-like methods, such as Real Stabilization Method

(RSM)[5], Analytical Continuation in the Coupling

Constant (ACCC)[6] approach and Complex Scaling

Method (CSM)[7].

In the past decades, relativistic mean-field (RMF)

theory has been successfully applied to study the

properties of nuclei at and far from the line of β-

stability. Combined with RMF theory, there are sev-

eral approaches being developed to deal with reso-

nance states, including RMF-SPS[8], RMF-ACCC[9]

and RMF-RSM[10]. Furthermore, different physics

quantities, including phase shift[11, 12] and density of

states[13], are proposed to extract the resonance en-

ergy and width.

In this paper, we will study the single-particle

resonance states in 122Zr with the newly developed

RMF-RSM approach. Two efficient methods will be

adopted to extract the corresponding resonance en-

ergy and width.

2 The relativistic mean-field model

The starting point of the RMF theory with meson-

exchange providing nucleon-nucleon interaction is the

standard effective Lagrangian density constructed

with the nucleon field (ψ), two isoscalar meson fields

(σ and ωµ), the isovector meson field (ρµ) and the

photon field (Aµ)[14, 15],

L = ψ̄
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where M and mi(gi) (i = σ,ωµ,ρµ) are the masses

(coupling constants) of the nucleon and the mesons

respectively. The field tensors of the vector mesons

and the electromagnetic field are defined as,

Ωµν = ∂µ
ων −∂ν

ωµ, (2a)

Rµν = ∂µ
ρν −∂ν

ρµ, (2b)

F µν = ∂µ
Aν −∂ν

Aµ. (2c)

From Eq. (1), one can obtain the Dirac equa-

tion for single-particle orbits and its wavefunctions ψi

and classical time-independent inhomogeneous Klein-

Gordon equations for the meson fields and photon

field via variational principle. With the restriction of

spherical symmetry, the coupled Dirac equation and

Klein-Gordon equations are solved iteratively in r-

space with box size Rmax. More details about the

numerical techniques can be found in Ref. [15].

3 The real stabilization method

For a bound state, the eigenenergy will not change

with the box size Rmax. For those states with en-

ergy greater than zero, there are also some states

stable against Rmax. Such stable states correspond

to resonances. It is the basic idea of real stabilization

method and will be used to find out the single-particle

resonance states in 122Zr. Furthermore, in this paper,

we will introduce two methods proposed by Maier et

al.[12] and Mandelshtam et al.[13] to extract the cor-

responding resonance energies and widths. In the

following, these two methods will be called Maier

method and Mandelshtam method respectively for

brevity.

In Maier method, the resonance energy Eγ is

determined by the condition ∂E2/∂R2
max = 0, at

which, the box size is labeled as R̄max. Assuming

that the phase shift from the potential scattering

ηl,pot(E) varies slowly with respect to the box size,

i.e., ∂ηl,pot(E)∂Rmax ∼ 0, the resonance width Γ is

simply given by,

Γ =

2
√

E2
γ
+2EγM

−(Eγ +M)R̄max−(E2
γ
+2EγM)[∂E/∂Rmax|R̄max

]−1
.

(3)

In Mandelshtam method, the resonance parame-

ters could be calculated by computing the density of

states ρR(E) from the stabilization diagram of the

eigenenergies ER vs Rmax. The density of states is

composed of contributions from the localized space

and its orthogonal space,

ρR(E) = ρQ
R(E)+ρP

R(E) . (4)

ρQ
R(E) is the expected resonant part which is sta-

ble against Rmax for Rmax outside the Q region, and

which, for the case of an isolated resonance, is ex-

pected to be[16]

ρQ(E)'π
−1 Γ/2

(Eγ−E)2 +Γ 2/4
. (5)

Assuming that the resonant part of ρR(E) stabi-

lized at relatively small Rmax, where ρP
R(E) is negligi-

ble, the density of state ρR(E) approximately equals

to ρQ
R(E) and determined by[13],

ρR(E)' ρQ
R(E) =

1

∆R

∑

j

∣

∣

∣

∣

dEj(R
′)

dR′

∣

∣

∣

∣

−1

Ej(R
′)=E

, (6)

where

Ej(R
′) =E, Rmax−∆R/2<R′<Rmax+∆R/2. (7)

The index j sums the derivatives of the Ej vs Rmax

curves at the intersections of the curves with the con-

stant E line, if they lie in the ∆R region over which

we have averaged.

4 Numerical calculations and results

The calculation of single-particle resonance states

in 122Zr within RMF-RSM approach is composed of

two steps. First, we perform RMF calculation for

the single-particle energy levels in 122Zr with PK1 ef-

fective interactions[17] by changing the box size Rmax

from 6 fm to 50 fm. Then, we extract the resonance

parameters with both Maier method and Mandelsh-

tam method.

Figure 1 shows four neutron single-particle en-

ergy levels with positive energies, which are stable

against Rmax. For the state νh9/2, the lowest state

falls down quickly at 10 fm and then stabilizes un-

til Rmax = 27 fm. It implies that there is a nar-

row νh9/2 resonance state with resonance energy

Eγ = 2.43 MeV. The same behavior happens for

νi13/2 state with Eγ = 5.91 MeV. However, for νf5/2

and νi11/2 states, the stabilization is not obvious

which implies two wide resonance states.

In order to extract the resonance parameters with

Mandelshtam method, the averaged densities of the

four resonance states are plotted in Fig. 2. According

to Eq. (5), the peak of ρR(E) corresponds to the res-

onance energy Eγ, at which, ρR(E) is inversely pro-
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portional to the resonance width Γ . Fig. 2 shows

that νh9/2 state has a narrow resonance peaked at

Eγ = 2.43 MeV and νi11/2 state has a wide resonance

peaked at Eγ = 10.6 MeV.

Fig. 1. Eigenenergies of νh9/2, νf5/2, νi13/2 and νi11/2 states as functions of the box size Rmax in 122Zr.

Fig. 2. The averaged density 〈ρR(E)〉 of resonance states νh9/2, νf5/2, νi13/2 and νi11/2 in 122Zr.
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Fig. 3. Energies and widths of single neutron

resonant states in 122Zr from different meth-

ods. The data labeled with ACCC and SPS

are taken from Ref. [6].

The resonance energy Eγ and width Γ for the neu-

tron resonance states in 122Zr are plotted in Fig. 3.

One can see that the resonance widths given by Man-

delshtam method are always smaller than those given

by Maier method. It is due to the statistic error in

the calculation of ρR(E) as shown in Eq. (6). A way

to decrease this error is taking a larger ∆R in the

Mandelshtam method. Compared with the results by

RMF-ACCC and RMF-SPS methods, a wide reso-

nance state of νi11/2, instead of the narrow resonant

state νf7/2 has been found in present study. More-

over, the calculated resonance parameters of νh9/2

and νi13/2 are coincide with those given by RMF-

ACCC and RMF-SPS methods.

5 Summary

In conclusion, RMF-RSM approach has been ap-

plied to study the resonance states in 122Zr with both

Maier method and Mandelshtam method. The av-

eraged density of states, neutron resonance states

with energies and widths are studied. Four neutron

resonance states: νh9/2, νi13/2, νf5/2 and νi11/2

have been found, where the former two states are

narrow resonances, while the latter ones are wide

resonances. The results are compared with those ob-

tained by RMF-ACCC and RMF-SPS approaches.
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