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Towards Lambda-nucleon coupling constants

in relativistic mean field theory *
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Abstract New parameter sets for Λ-nucleon coupling in relativistic mean field theory are proposed based on

nucleon-nucleon effective interaction PK1. Hypernuclear properties are described well through a systematical

study. Effects of hyperon tensor coupling term on spin-orbit splitting are also investigated self-consistently.
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1 Introduction

For the world of matter made of u, d, s quarks, Λ

hypernuclei are the optimal objects that allow one to

study the behaviors of bound hyperons. Such an ob-

ject extend hyperon-nucleon, hyperon-hyperon inter-

actions into a unified picture of baryon-baryon inter-

actions for understanding short-range nuclear forces

like Λ-N spin-dependent forces[1, 2] and high density

nuclear matter like neutron-star[3].

Short-range parts of nuclear force such like repul-

sive core and spin-orbit force causes elementary prop-

erties of nucleus, like saturation, magic numbers etc.

Such characters naturally appear in relativistic meth-

ods, e.g., relativistic mean field (RMF) theory [4].

Based on effective nucleon-nucleon interaction

PK1, which provides good description for the prop-

erties of both nuclear matter and nuclei in and far

from the valley of β stability[5], new effective lambda-

nucleon interaction are proposed in RMF theory. It’s

noted that a tensor coupling term of Λ to the vector

fields are included self-consistently.

This paper is organized as follows: Section 2 con-

tains an outline of the RMF model. Effective Λ-

nucleon interaction determining procedure, applica-

tion of adjusted interaction on hyperon splitting en-

ergy, baryon spin-orbit potential, central potential

and single particle energy of the spherical ground

states, are analyzed in Section 3. The results are

briefly summarized in Section 4.

2 Theoretical framework

In RMF theory, one describes the baryons (B=n,

p, Λ) in a nucleus as Dirac spinors (ψB,mB) moving in

the fields of mesons: isoscalar-scalar meson (σ, mσ,

gσ), isoscalar-vector meson (ω, mω, gω), isovector-

vector meson (ρ, mρ, gρ) and the photo (A). The field

tensor for the ω-meson is given as Ωµν = ∂µων−∂νωµ

and by similar expressions for the ρ-meson, and the

photon. The Lagrangian density including the non-

linear self-coupling of the σ field (coupling constants

g2,g3), the ω field (coupling constant c3) and the ten-

sor coupling term (coupling constant fωBB) for the

vector meson is constructed as:

L = ψ̄B (/pB−mB−gσBBσ−gωBB/ω−gρBB/ρτ )ψB−

ψ̄BQB /AψB +
fωBB
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where σµν =
1

2i
[γµ,γν ], the charge QB is either

e(1−τ3)/2 for nucleon or 0 for hyperon Λ. As the ωBB

tensor coupling terms is negligible for nucleons[6], only

the tensor coupling term for Λ will be considered in

this work.

The equations of motion for baryons can be de-

rived from the Lagrangian density in Eq.(1) with vari-

ational principle as:

[γµ(i∂µ
−V µ

B )−(mB+SB)+
fωBB

4mB

σµνΩµν ]ψB = 0, (2)

where the scalar potential SB and vector potential V µ
B

are given by






SB = gσBBσ,

V µ
B = gωBBω

µ +gρBBτ3 ·ρ
µ
3 +QBA

µ.
(3)

Potentials are determined in the mean-field ap-

proximation from solutions of Klein-Gordon equa-

tions for mesons and Coulomb field. The system of

equations being restricted to the spherical symmetry

is solved self-consistently in coordinate space within

the box of 20 fm and a step size of 0.1 fm. PK1 set for

nucleon-nucleon interaction is adopted. For the de-

tailed formalism and numerical techniques, see Ref.[7]

and the references therein.

3 Results

To get the consistent estimation of hypernuclei,

the scalar and vector vertex factors Rσ = gσΛΛ/gσNN,

Rω = gωΛΛ/gωNN for Λ-nucleon interaction are opti-

mized to the available binding energy of Λ in ground

state nuclei 12−14
Λ C, 14,15

Λ N, 16
Λ O, 28

Λ Si, 32
Λ S, 40

Λ Ca, 51
Λ V,

89
Λ Y, 139

Λ La and 208
Λ Pb. Ratios (Rσ,Rω) are varied with

a step size 0.02. By systematically minimizing the ac-

cumulated squared deviation

χ2
≡

∑

i

(Eexp.
i −Ecal.

i )2

(∆Eexp.
i /Eexp.

i )2
, (4)

proper parameter sets are found in least-square fit.

∆Eexp.
i is experimental error bar and the relative er-

ror of the data
∆Eexp.

i

Eexp.
i

plays a role as sensitivity co-

efficient. Since there is no experimental uncertainty

of 14
Λ N, its relative weight is fixed with the largest

percentage 3% of those light hypernuclei.

Table 1. Parameter sets for hyperon-meson interaction based on PK1 set, where Rx = gxΛΛ/gxNN|x=σ,ω. The

total square deviation from the experimental data ∆2 =
∑

i(E
exp.
i −Ecal.

i )2, the relative square deviation

δ2 =
∑

i(E
exp.
i −Ecal.

i )2/(Eexp.
i )2, χ2 =

∑

i(E
exp.
i −Ecal.

i )2× (Eexp.
i )2/(∆Eexp.

i )2.

sets fωΛΛ/gωΛΛ =0 fωΛΛ/gωΛΛ =1

S01 S02 ST1 ST2 FT1

Rσ 0.615 0.377 0.618 0.386 0.649

Rω 0.667 0.377 0.667 0.386 0.704

χ2(104) 11.143 22.133 3.523 12.399 3.233

δ2(10−4) 373 577 576 437 346

∆2 11.06 20.32 8.28 14.11 8.77

Besides χ2, mean-square error δ and average er-

ror ∆ are respectively introduced for comparison.

χ2 distribution for the deviation of Λ-single parti-

cle energies either without (fωΛΛ/gωΛΛ = 0) and

with (fωΛΛ/gωΛΛ = 1) Λ tensor coupling term are

shown in Table 1. Sets S01 and ST1 are obtained

by keeping Rω = 2/3, which comes from naive quark

model. Sets S02 and ST2 are get by simply assuming

Rω =Rσ. Set FT1 is adjusted keeping both Rω and

Rσ free.According to the value of χ2, FT1 is the best

one among these five sets.

To know the systematical application, compari-

son of experimental data[8—13] (filled squares) and the

calculated Λ binding energies versus A−2/3 (A is the

hypernuclear mass, from 9 to 208) with Λ-nucleon in-

teractions S01, S02, ST1, ST2, and FT1 are presented

in Fig. 1. Obviously, the parameter sets with tensor

coupling term show a better agreement than those

without tensor coupling term.

As p state spin-orbit splitting 0.152±0.09 MeV of
13
Λ C[1] is well known to show the novel character of hy-

pernuclear structure introduced by hyperon, the hy-

peron spin-orbit splitting of p states calculated with

S01, S02, ST1, ST2 and FT1 sets are presented in

Fig. 2. It demonstrates the importance of the tensor

coupling term even there is no sufficient spin-orbit

splitting data.
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Fig. 1. The divergence of hyperon binding en-

ergy from experimental data, where nucleon-

nucleon interaction is PK1.

Fig. 2. The spin-orbit splitting of Λ 1p states

with parameter sets listed in Table 1.

Microscopic reason for the phenomena shown in

Fig. 2 can be found by converting Dirac equations

into a Schrödinger-like equation, where the spin-orbit

potential is:

Vsol ·s =

[

1

2m2

1

r

d

dr
(V −S)−

2VT

m

1

r

]

l ·s, (5a)

m = m−
1

2
(V −S); VT =

fωΛΛ

2mΛ

∂rω0. (5b)

As fωΛΛ > 0, there are two negative contribution to

the spin-orbit potential. This is also one of the great

advantages of the relativistic treatment that the spin-

orbit interaction is automatically included in baryons

motion equations.

Taken 16
Λ O as an example, the spin-orbit potential

Vso calculated with FT1 set shows that with tensor

part, the contributions to hyperon spin orbit poten-

tial from nuclear core and tensor coupling term al-

most cancel each other, which will result in a highly

suppressed spin-orbit potential with the magnitude

less than 1 MeV. Spin-orbit splitting of Λ 1p states

without and with tensor coupling term are reduced

obviously from 1.68 to 0.26 MeV.

4 Summary

Preliminary studies on parameter sets for the

Λ-nucleon interaction in relativistic mean field the-

ory are proposed based on nucleon-nucleon effec-

tive interaction PK1. Two hyperon parameters–the

scalar and vector vertex factors (Rσ,Rω)– related

to nucleon-nucleon coupling strength are determined

by a fit to hyperon binding energy of ground state

Λ-hypernuclei. Sets FT1 provides an excellent sys-

tematical description of hypernuclei. Spin properties

are uniquely fixed for the relativistic character of the

model. The effects of tensor coupling term of Λ hy-

peron to the vector fields on the spin-orbit splitting

are studied self-consistently. Further delicate investi-

gation is in progress.
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