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An Abelian Ward identity and the vertex corrections to

the color superconducting gap *
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Abstract We derive an Abelian-like Ward identity in the color superconducting phase and calculate vertex

corrections to the color superconducting gap. Making use of the Ward identity, we show that subleading order

contributions to the gap from vertices are absent for gapped excitations.
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1 Introduction

Quark matter at large quark chemical potential

µ is a weakly coupling system because momenta ex-

changed in the interaction between quarks near the

Fermi surface is of the order µ, which makes the cou-

pling constant g small due to the property of asymp-

totic freedom in quantum chromodynamics (QCD).

In this case, the dominant interaction between two

quarks is one-gluon exchange, which is attractive

in the color-antitriplet channel. Consequently, at

sufficiently low temperatures, the quark Fermi sur-

face is unstable with respect to the formation of

Cooper pairs [1, 2] which leads to the so-called color

superconducting (CSC) state[3—13] (for reviews, see,

e.g.[5, 14—21]).

In a superconductor, exciting particle-hole pairs

costs at least an energy amount 2φ0, where φ0 is

the value of the superconductor gap parameter at the

Fermi surface for T =0 and can be computed from a

gap equation derived under mean-field approximation

which involves one-gluon exchange and bare quark-

quark-gluon vertex. Schematically this gap equation

can be written in the form[13, 22—26]

φ0 = g2

[

ζ ln2

(

µ

φ0

)

+β ln

(

µ

φ0

)

+α

]

. (1)

For a small value of the QCD coupling constant,

g� 1, the solution is

φ0 = 2bµexp

(

−
c

g

)

[1+O(g)] . (2)

The first term in Eq. (1) contains two powers

of the logarithm ln(µ/φ0), one is the same as in

BCS theory[1, 2] and the other is from the exchange

of almost static magnetic gluons, which is a long-

range interaction[9, 11—13]. The weak coupling solu-

tion Eq. (2) implies that this term contributes to the

gap equation at the order O(1). We call this term

the leading order term. The value of the coefficient

ζ determines the constant c in Eq. (2). The second

term in Eq. (1) contains subleading contributions of

the order O(g) to the gap equation, characterized by

a single power of the logarithm ln(µ/φ0)∼ 1/g. Part

of it arises from the exchange of non-static magnetic

and static electric gluons[13, 22—25]. Another source is

the quark self-energy correction[23]. The coefficient β

in Eq. (1) determines the constant b in Eq. (2). The

term is called the subleading one. The third term in

Eq. (1) summarizes the sub-subleading contributions

of order O(g2) with neither a collinear nor a BCS

logarithm. It was argued in Refs. [10, 13, 27] that at

this order the gauge-dependent terms enter the QCD

mean field gap equation. In the Coulomb gauge the

authors of Ref. [28] showed that the gauge-dependent
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contribution arising from the gluon propagator ap-

pears at this order when the momentum arguments

of the gap are put on the quasi-particle mass shell. In

a covariant gauge one can see that the gauge depen-

dence shows up at the subleading order and brings an

additional factor exp(3/2ξ)[11] to prefactor b. How-

ever, the gap parameter is in principle an observable

quantity on the quasi-particle mass-shell, and thus

gauge-independent. Therefore, the naive mean-field

approach to the gap equation with bare qqg vertices

is not enough to guarantee the gauge independence

even at the subleading level.

A general way to study gauge independence is to

make use of Ward identities. This approach has been

frequently used to show the gauge independence of

physical collective excitations in thermal gauge theo-

ries, like hot QCD[29—32]. However, we need to use a

Nambu-Gorkov (NG) basis in the color superconduc-

ting phase, therefore it is desirable to derive a Ward

identity in the NG basis with diquark condensates.

Recently Gerhold and Rebhan[33] used the genera-

lized Nielsen identities to give a formal proof that the

fermionic quasiparticle dispersion relation in a color

superconductor is gauge independent under the as-

sumption that the 1PI part of variation induced by

that of the gauge fixing function in the effective ac-

tion has no singularities coinciding with those of the

quark propagator. We have provided another proof of

gauge independence of the 2SC gap by deriving a gen-

eralized Ward identity from QCD with the diquark

condensate and by applying it to a gap equation[34].

In this paper, we present an investigation of the

vertex contributions in the gap equation. The calcu-

lation is done in Nambu-Gorkov (NG) formalism in a

super-phase with diquark condensates. We will show

that this method is equivalent to and a good alterna-

tive to that used in Ref. [12] based on four-fermion

scattering amplitudes. We found that there is a simi-

lar cancellation as in the normal phase between the

Abelian and triple-gluon vertices, which leads to an

Abelian-like Ward identity in the NG form except

that an additional term appears in the super-phase.

With this Ward identity, we finally show that the con-

tributions from vertices to the gap equation are free

of subleading terms for gapped modes.

In this paper four-momenta are denoted by capital

letters, Kµ = (k0,k), with k being a three-momentum

of modulus |k| ≡ k and direction k̂ ≡ k/k. For

the summation over Lorentz indices, we use a no-

tation familiar from Minkowski space, with metric

gµν = diag(+,−,−,−). For simplicity and without

ambiguity we always write Lorentz indices as sub-

scripts.

2 Settings

In this section, we will give some preparation

knowledge and conventions necessary to the calcula-

tion. Since we are concerned with the super-phase, it

is quite natural to work in the NG basis. We will see

that it is very convenient for describing the mass-shell

condition for quasi-particles in the NG basis. In this

paper we choose a special case for convenience, the

color superconducting phase with two flavors (2SC).

The calculation can be extended to other phases. We

work in zero temperature.

In the NG basis the quark fields read

Ψ =

(

ψ

ψc

)

, Ψ = (ψ ψc), (3)

where conjugate fields are given by ψc = Cψ
T

and

ψc = ψTC with charge conjugate matrix C = iγ2γ0.

The quark propagator inverse is

S−1(K) =





S−1
11 S−1

12

S−1
21 S−1

22



=S−1
0 +Σ=





S0
11

−1
0

0 S0
22

−1



+





Σ11 Σ12

Σ21 Σ22



 , (4)

where we use boldface letters to denote the NG ma-

trices. The free part is given by S0
11

−1(K) =6K+µγ0

and S0
22

−1
(K) =6K−µγ0. In the super-phase, the off-

diagonal elements of self-energy Σ are proportional

to the diquark condensate or the gap parameter,

Σ21 = J3τ2γ5φ
eΛe

Σ12 = −J3τ2γ5φ
e∗Λ−e ,

where the color part is chosen as (J3)ij = iεi3j, the

third generator of SO(3), to incorporate the pairing

in the anti-symmetric channel between the red and

green fundamental colors. The flavor part τ2 is the

second Pauli matrix representing the anti-symmetry

in flavor space. The appearance of γ5 implies that

we only consider even-parity pairings. Then the

quark propagators are given by finding the inverse

of S−1(K) in Eq. (4),

S11 =
Z2(q0)LiΛ

e
qS

0
22

−1

q2
0 − [Z(q0)εq,ie]2

,

S22 =
Z2(q0)LiΛ

−e
q S0

11
−1

q2
0 − [Z(q0)εq,ie]2

,
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S12 = −
Z2(q0)J3τ2γ5φ

e∗Λe
q

q2
0 − [Z(q0)εq,e]2

,

S21 =
Z2(q0)J3τ2γ5φ

eΛ−e
q

q2
0 − [Z(q0)εq,e]2

, (5)

where the repetition of indices implies summation

if not indicated explicitly. Note that there are two

branches of excitations, one is gapped denoted by i =

1, the other one is gapless denoted by i = 0. Then we

have φ1 = φ and φ0 = 0. The quasi-particle energies

are εq,ie =
√

(q−eµ)2 + |φe
i |

2. The color projectors are

L1 = J2
3 and L0 = 1−J2

3 , corresponding to the gapped

and gapless modes, respectively. The quark wave-

function renormalization[23, 35—40] constant Z(q0) re-

sults from the diagonal part of the quark self-

energy, Σ11 and Σ22, and is given by Z(q0) = 1−

(g2/18π
2) ln(M 2/q2

0) withM 2 =Nfg
2µ2/(2π

2), a scale

characterizing Debye or Meissner screening. For two

loop corrections to the gap equation in the NG basis,

Z(q0) can be neglected because its contribution is be-

yond the sub-subleading order. The bare quark-gluon

vertex is

Γ (0)a
µ

=





T a 0

0 −T aT



γµ ≡T aγµ . (6)

Here we write it in a special way with the color and

Dirac part separated. In this paper, we choose a co-

variant gauge, the hard dense loop (HDL) propagator

for gluons.

In the NG basis, the mass shell condition for

quasi-particles can be expressed as

S−1(Kon)Ψ(Kon) = 0 ,

Ψ(Kon)S
−1(Kon) = 0 , (7)

where Kon = (εek,i,k) denotes on-shell momenta and

Ψ(Kon) are on-shell wave functions. Note that these

equations are in the matrix form. Hereafter we sup-

press the subscript of Kon for simplicity of notations,

without ambiguity.

3 Vertex corrections

In this section we will investigate the vertex con-

tributions in the gap equation. An Abelian-like Ward

identity will also be derived explicitly from a cancella-

tion between the Abelian and triple-gluon diagrams.

There are two 1-loop diagrams which provide cor-

rections to the quark-gluon vertex, one is the Abelian

diagram and the other one is from the triple gluon

diagram, see Fig. 1. The full vertex is then the sum

of the two 1-loop diagrams and the tree-level vertex.

Now we focus on the Abelian diagram in Fig. 1 de-

noted by iΛb
1σ

. Note that the gluon line in iΛb
1σ

is a

HDL-dressed propagator. Contracting iΛb
1σ

with mo-

mentum P we have

iPσΛ
b
1σ

= g3

∫
d4P ′

(2π)4
iDHDL

µν
(P ′)×

iT aγµiS(K−P ′)iT b 6P ×

iS(K−P −P ′)iT aγν , (8)

where iDHDL
µν

(P ′) is a HDL-dressed propagator. We

note that 6P can be written as

6P = S−1(K−P ′)−S−1(K−P −P ′) . (9)

Fig. 1. Right-hand-side of the gap equation and

the full vertex.

Here we have neglected the diagonal parts of self-

energy Σ11 and Σ22 which is of the order gφ on the

Fermi surface. The reason is that once Σ11/22 are in-

serted into the vertex (the left full vertex in the first

diagram of Fig. 1) in the gap equation whose right-

hand-side is given by the first diagram of Fig. 1, one

will see that the contribution is at most of the order

g4φ ln2φ where the two logs are from the loop inte-

gral. We also assume that the gap is independent of

the momentum within the range |q−µ|. gµ around

the Fermi surface, which means the gap is assumed to

be constant in the gap equation with the momentum

of the exchanged gluon being of the order gµ. Inser-

ting Eq. (9) into Eq. (8), we see that S−1(K−P−P ′)

in Eq. (9) cancels S(K−P −P ′) in Eq. (8). But for

S−1(K −P ′), the procedure is a little more compli-

cated. Because T b is not commutable with S(K−P ′),

with a T b in the middle, S−1(K−P ′) in Eq. (9) can-

not directly touch S(K−P ′) in Eq. (8). Making use

of the commutator

[T a,S−1] =−





0 A12

A21 0



 , (10)
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where A12 = (T aJ3 + J3T
aT)τ2γ5φ

e∗Λ−e and A21 =

(T aTJ3 + J3T
a)τ2γ5φ

eΛe, we can move S−1(K −P ′)

over T b and cancel S(K −P ′). Note that we have

neglected the momentum dependence of the gap for

the soft gluon exchange, therefore the above com-

mutator is constant in the gap equation. Obviously

the commutator only has off-diagonal elements which

are of the order φ. After a short algebra, we obtain

iPσΛ
b
1σ

(P,K,K−P ) as

iPσΛ
b
1σ

= g[iΣ(K)T b−T biΣ(K−P )]+

gf abcT a[Σnc(K)−Σnc(K−P )]T c+

Ib
X(K,K−P ) , (11)

where Σnc is the quark self-energy with the color part

factorized out as Σ=T aΣncT
a.

The term Ib
X(K,K−P ) with X = [S−1,T b] is

Ib
X = −g3

∫
d4P ′

(2π)4
DHDL

µν
(P ′)T aγµS(K−P ′)×

[T b,S−1]S(K−P −P ′)T aγν . (12)

Note that this term results from the superphase

because of the non-vanishing commutator [T b,S−1]

which is proportional to the diquark condensate. The

similar term is there even in QED[41].

Now we look at another one-loop diagram with

triple-gluon vertex in Fig. 1, which reads

PσiΛb
2σ

= g3Pσ

∫
d4P ′

(2π)4
iDHDL

ν′ν
(P ′)iDHDL

µ′µ
(P ′−P )×

iV abc
νσµ

(P ′,−P,−(P ′−P ))×

T aiγν′ iS(K−P ′)T ciγµ′ . (13)

The triple-gluon vertex iV abc
νσµ

is composed of two

parts, the bare and the HDL one iV = iV (0) +iV HDL.

First let us focus on the bare vertex, we decom-

pose the bare vertx into a transverse V (0)F and a lon-

gitudinal part V (0)P,which is iV 0 = iV (0)F+iV (0)P, and

each part reads

iV (0)F = −gf abc [(−2P ′+P )σgµν +2Pµgσν] ,

iV (0)P = −gf abc [P ′

νgσµ +(P ′−P )µgσν] . (14)

Contracted with two HDL-propagators in Eq. (13)

V (0)P gives zero due to the fact that the HDL-

propagator has the transverse property, while V (0)F

satisfies a Ward identity as follows

PσiV (0)F
νσµ

= (P 2−2P •P ′)gµν =
[

(P ′−P )2−P ′2
]

gµν ,

(15)

where we have factorized out a constant −gf abc.

Fig. 2. HDL-resummed triple-gluon vertices.

Then we look at the HDL-resummed triple-gluon ver-

tices as illustrated in Fig. 2. The first contribution is

from Fig. 2(a)

iV1 =
1

2
g3Ra1a2a3

∫
d4K

(2π)4
Tr[γµ1

S0(K1)×

γµ2
S0(K2)γµ3

S0(K)] , (16)

where K1 =K−P1, K2 =K−P1−P2 and Ra1a2a3 ≡

Tr[T a1T a2T a2 ]. Note that we used the free quark

propagator without condensate and self-energy cor-

rection, because the condensate and self-energy would

contribute at a higher order. There is a factor of 1/2

in the front due to the usage of the NG basis. It is

easier to work in the normal basis and get rid of the

factor 1/2. Contracting iV HDL with P1µ1
we obtain

iP1µ1
V1 = g3Ra1a2a3

∫
d4K

(2π)4
Tr[6P1S0(K1)×

γµ2
S0(K2)γµ3

S0(K)] . (17)

We can rewrite 6P1 as S−1
0 (K)−S−1

0 (K1) in the above

formula and get

iP1µ1
V1 = igRa1a2a3

[

Πnc
µ2µ3

(P3)−Π
nc
µ2µ3

(P2)
]

, (18)

whereΠnc
µν

is the polarization tensor without the color

part and

Πnc
µ2µ3

(P2) = ig2

∫
d4K

(2π)4
Tr[S0(K−P1)γµ2

×

S0(K−P1−P2)γµ3
] ,

Πnc
µ2µ3

(P3) = ig2

∫
d4K

(2π)4
Tr[γµ2

S0(K−P3)×

γµ3
S0(K)] , (19)

where we have used P3 = P1 +P2. Another diagram

Fig. 2(b) is the same as Fig. 2(a) except that labels

2 and 3 are interchanged, which gives

iP1µ1
V2 = igRa1a3a2 [Πnc

µ2µ3
(P2)−Π

nc
µ2µ3

(P3)] . (20)

The sum of the two diagrams gives

iP1µ1
V HDL;a1a2a3

µ1µ2µ3
=−gf a1a2a3 [Πµ2µ3(P3)−Π

µ2µ3(P2)] ,

(21)
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where Πµ2µ3
is the polarization tensor with the color

factor and f a1a2a3 ≡−iTr[T a1(T a2T a3 −T a3T a2)]. We

add Eqs. (21) and (15) together. By doing so, we

make replacement a1a2a3 → bac, µ1µ2µ3 → σνµ,

P1,P2,P3 →P,−P ′,P ′−P , and obtain

PσiV abc
νσµ

= Pσ[iV (0)F;abc
νσµ

+iV HDL;abc
νσµ

] =

−gf abc{[(P ′−P )2−P ′2]gµν−

[Πµν(P ′−P )−Πµν(P ′)]}=

−gf abc[D−1
HDLµν

(P ′)−

D−1
HDLµν

(P ′−P )] . (22)

Substituting the above equation back into Eq. (13)

we get

PσiΛb
2σ

(K,K−P ) =−gf abcT a[Σnc(K)−Σnc(K−P )]T c .

(23)

Combining Eq. (11) with (23),we obtain

PσiΛb
σ
(K,K−P ) = g[iΣ(K)T b−T biΣ(K−P )]+

Ib
X(K,K−P ) . (24)

We can add the bare vertex igγσT
b to iΛb

σ
(K,K−P )

and get the full vertex iΓ b
σ

= igT bγσ + iΛb
σ

which is

the blob in the first diagram of Fig. 1:

PσiΓ b
σ

= ig[S−1(K)T b−T bS−1(K−P )]+

Ib
X(K,K−P ) . (25)

Here we have used Eq. (4) and the property that S−1
0

is commutable with T b.

With the identity in Eq. (25) we can evaluate the

gauge dependent part or the ξ part in the first dia-

gram of Fig. 1,

Iξ ∼ −ξg2

∫
d4P

(2π)4
1

P 4
×

[S−1(K)T b−T bS−1(K−P )−

igIb
X(K,K−P )]S(K−P )T bγρPρ . (26)

The first term inside the square brackets is vanishing

when sandwiched between on-shell wave functions.

The second term is also zero due to

∫
d4PPρ/P

4 = 0.

The contribution from Ib
X is of the sub-subleading or-

der for gapped modes in the gap equation.

Having PσiΛb
σ

in Eq. (24), can one derive iΛb
σ
? In

principle, one cannot. But at the limit P → 0, one

can derive the leading contribution of iΛb
σ
. Note that

there is a subtlety in defining the limit P → 0 because

it is involved in two different types p0 → 0, p→ 0 and

p→ 0, p0 → 0, which lead to different results for iΛb
σ
.

We take the first limit for both sides of Eq. (24) to

extract iΛb
i as follows

iΛb
i = lim

p→0
lim

p0→0
iΛb

i (K,K−P )∼
∂

∂pi

(r.h.s.) . (27)

We consider the gapped modes. The contribution of

Ib
X(K,K−P ) can be proved to be beyond the sublead-

ing order. Here we consider the first line in Eq. (24),

−igT b ∂
∂pi

Σ(K−P )

∣

∣

∣

∣

P=0

∼ 0 , (28)

which means both the diagonal and off-diagonal parts

are zero. We know that the diagonal parts Σ11/22 ∼

g2(k0 − p0) ln(|k0 − p0|/M) which has no dependence

on spatial momentum. The off-diagonal parts Σ12/21

are actually proportional to the diquark condensate

which we assume in this paper do not have momen-

tum dependence or the momentum dependence is of a

higher order. For gapped modes, the derivative of the

second term of Eq. (24) will also give zero from the

leading contribution. We now take the second limit

for both sides of Eq. (24) to extract iΛb
0 :

iΛb
0 = lim

p0→0
lim
p→0

iΛb
0(K,K−P )∼

∂
∂p0

(r.h.s.) . (29)

The derivative of the first line in Eq. (24) gives

−igT b ∂
∂p0

Σ(K−P )

∣

∣

∣

∣

P=0

∼ gγ0 lnφ , (30)

while the last term of Eq. (24) still gives zero. We

can insert a non-zero value of Λb
0 into the gap equa-

tion where Λb
0 couples to the Debye screened electric

gluon whose contribution turns out to be of the sub-

subleading order.

4 Summary and conclusion

We explicitly derived an Abelian-like Ward iden-

tity in a color superconducting phase from Feynman

diagrams, similar to the identity obtained by Nambu

in normal superconductivity[41]. The identity arises

from a cancellation between the Abelian diagram and

the triple-gluon one. The same Ward identity was

derived in Ref. [34] in a path integral approach. The

identity has one additional term proportional to the

Cooper condensate compared with that in the normal

phase, which is related to the gauge dependent part

or ξ part in the one-loop vertex correction in the color

superconducting phase in the Nambu-Gorkov basis.

We finally conclude that the vertex corrections are

free of the subleading contribution to the color super-

conducting gap by showing that the contribution of

the additional term is beyond the subleading order for

the gapped modes in the gap equation. The method

proposed in this paper is equivalent to Ref. [12]. The
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difference between these two approaches is that our

approach works in both super and normal phases

while the approach of Ref. [12] is based on the quark-

quark scattering amplitude in the normal phase. One

of the advantages of our approach is its compact form

in the NG basis, where a set of component diagrams

including those with and without normal phase cor-

respondences can be assembled into a single diagram

in the NG matrix form.

We thank D.-F. Hou for insightful discussions.
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