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Matrix method for the solution of RF field

perturbations due to local frequency shifts
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(Institute of High Energy Physics, CAS, Beijing 100049, China)

Abstract To tune the accelerating field to the design value in a periodical radio frequency accelerating

structure, Slater’s perturbation theorem is commonly used. This theorem solves a second-order differential

equation to obtain the electrical field variation due to a local frequency shift. The solution becomes very

difficult for a complex distribution of the local frequency shifts. Noticing the similarity between the field

perturbation equation and the equation describing the transverse motion of a particle in a quadrupole channel,

we propose in this paper a new method in which the transfer matrix method is applied to the field calculation

instead of directly solving the differential equation. The advantage of the matrix method is illustrated in

examples.
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1 Introduction

In a radio-frequency accelerating structure, a

specified electrical field distribution along the longitu-

dinal axis is designed in longitudinal beam dynamics.

Usually the distribution is simply flat, linear tilted, or

a combination of these two. On the one hand, the RF

structure design must follow the specified field distri-

bution. On the other hand, due to mechanical errors

in machining and assembly of the structure cells the

field distribution usually does not coincide with the

design curve. So, in the design and in the cavity tun-

ing, Slater’s theorem is commonly applied to calculate

the field distribution according to the local frequency

shift. The theorem is described by a resonant differ-

ential equation. This equation becomes very difficult

to solve if the local frequency shift represents a com-

plex function. However, the similarity of the equation

to that of the particle motion in a quadrupole channel

gives us a hint that the beam matrix transfer method

can be applied for the RF cavity field calculation. In

this paper we will propose this new approach.

2 Traditional algorithm of the pertur-

bation theorem

In a RF cavity the local frequency perturbation

along the longitudinal direction can be described as

a function of z

ω(z) = ω0 +δω(z) , (1)

where ω0 is the resonant angular frequency of the cav-

ity , while δω(z) is the local frequency shift. The local

frequency shift induces a longitudinal electrical field

distribution, as given by the equation:

d2Ez

dz2
+µ(z)ε(z)[ω2

0−ω2(z)]Ez = 0 . (2)

In a quasi-static approximation the variation of µ

and ε is negligible:

µ(z)≈µ0, ε(z)≈ ε0 . (3)

For small perturbations we assume Ez = E0 + δEz,

where E0 stands for the average electrical field of the

whole cavity, and δEz is the field perturbation along

the cavity, with δEz �E0. For a first order small fre-

quency shift, we have ω2−ω2
0 = 2ω0δω+(δω)2 ≈ 2ω0δω,

and therefore Eq. (2) becomes

d2

dz2

[

δEz

E0

]

=
8π

2

λ2
0

δf

f0

. (4)

Here f0 = ω0/2π = c/λ0. Eq. (4) is called Slater’s

theorem.

Applying the following boundary condition for a

resonant cavity:

d

dz

[

δEz

E0

]

= 0 (z = 0 and z = L), (5)
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we get

1

LT

LT∫

0

δfdz = 0 . (6)

Eq. (6) means that the average frequency shift

over the whole cavity is zero. From this relation one

can derive the resonant frequency of the cavity:

f0 =
1

LT

LT∫

0

f(z)dz . (7)

The solution of Eq. (4) with the boundary condi-

tion leads to a relation between the local frequency

shifts and the deviation of the electrical field distribu-

tion along the cavity. Some solution examples for the

step function of the local frequency shift can be found

in Refs. [1] and [4]. Inversely, it can also be used to

adjust the electrical field by changing the local fre-

quency while keeping the total frequency unchanged.

3 Particle transport equation

It is well know that the particle transport in

a quadrupole channel is described by the following

equation:
d2u

dz2
+ΩU (z)u = 0 . (8)

Here we define u = (βsγs)
1/2U , where U means the

transverse direction, either x or y and

ΩU(z) =



























k2
q =

eGm

m0cβsγs

, (x : focus;y : defocus)

−k2
q =−

eGm

m0cβsγs

, (x : defocus;y : focus)

0, (x,y : drifting)

.

(9)

The coefficient ΩU (z) is a piecewise constant in the

transport channel. For this kind of equation, the

transfer matrix is chosen to express the solution. For

example, the transfer matrix in a focusing magnet is:
(

x

x′

)

= Mf

(

x0

x′

0

)

, (10)

with

M =





cos(kqz)
1

kq

sin(kqz)

−kq sin(kqz) cos(kqz)



 . (11)

Here kq is the focusing coefficient.

For a transport channel with N elements, the par-

ticle transverse movement can be easily calculated by

the following equation:
(

x

x′

)

= M

(

x0

x′

0

)

=

j=1
∏

j=N

Mj ·

(

x0

x′

0

)

. (12)

4 Transfer matrix for the electrical

field solution

It is obvious that the transfer matrix method is

much easier than solving the differential equation. So

the electrical field problem should also have the same

kind of transfer matrix solution as particle transport

in a quadrupole channel.

Without the assumption of a small perturbation

in both the field and the local frequency, Eq. (2) can

be written as:

d2Ez

dz2
−

4π
2
δf

c2
[2f0−δf ]Ez = 0 . (13)

Here δf is a function of z. We define a coefficient

RE(z):

RE(z) =



























































−k2 = −
4π

2
δf

c2
[2f0−δf ] =

−

∣

∣

∣

∣

4π
2
δf

c2
[2f0−δf ]

∣

∣

∣

∣

, (δf > 0)

k2 = −
4π

2
δf0

c2
[2f0−δf ] =

∣

∣

∣

∣

4π
2
δf

c2
[2f0−δf ]

∣

∣

∣

∣

, (δf < 0)

0, (δf = 0)

,

(14)

with the parameter k =

∣

∣

∣

∣

4π
2
δf

c2
[2f0−δf ]

∣

∣

∣

∣

1/2

.

It represents a RF cavity composed of multi-cells

which have different frequency shifts due to various

errors. Comparing with the particle transverse move-

ment equation, the coefficient here is also piecewise

constant. Consequently, the equation of the electrical

field has a transfer matrix solution.

Corresponding to the positive, negative and zero

coefficient, the particle transverse movement has a fo-

cusing matrix, a defocusing matrix and a drift matrix,

respectively, while in the perturbation of the electri-

cal field these correspond to a frequency down shift,

a frequency up shift and to no change.

1) Transfer matrix of the “frequency down shift”

section:

The electric field perturbation equation can be

written as follows:
(

E

E′

)

= M(z)

(

E0

E′

0

)

. (15)

Here the suffix 0 stands for the initial electrical

field and

M(z) =





cos(kz)
1

k
sin(kz)

−k sin(kz) cos(kz)



 . (16)
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2) Transfer matrix of the “frequency up shift” sec-

tion:

M(z) =





ch(kz)
1

k
sh(kz)

ksh(kz) ch(kz)



 . (17)

3) Transfer matrix of the “frequency unchanged”

section:

MO(z) =





1 z

0 1



 . (18)

For a cavity with multi-cells, the electrical field

distribution in the N -th cell can be calculated by

multiplying the transfer matrices of the N sections

as follows:
(

E

E′

)

= M(z)

(

E0

E′

0

)

= MN(z)

j=1
∏

j=N−1

Mj(Lj) •

(

E0

E′

0

)

.

(19)

Successive calculation for each cell leads to the whole

distribution of the field in the cavity.

Apart from the formal similarity between the

equations describing the movement of a particle in

a quadrupole channel and the field perturbation in

a RF cavity, we should notice that there is an obvi-

ous difference between them. For the particle transfer

the initial phase space coordinates x0, x′

0 and the fo-

cusing coefficient kq are given parameters. But the

three constants E0, E′

0 and k are to be determined in

the case of a field perturbation in a cavity. From the

resonant boundary condition we have

E′

0 = 0 , E′(LT ) = 0 . (20)

This means that the transfer element of the total ma-

trix for the cavity is M21(LT ) = 0. This relation can

be solved for k and the resonant frequency f0 be de-

termined.

To determine the initial field E0 we assume the

condition that the stored energy in a cavity is a con-

stant, independent of the perturbation. So the inte-

gration of E2 along the cavity should be LT E2
0 :

LT∫

0

E2dz = LTE2
0 . (21)

Here E0 stands for the initial field amplitude without

perturbation, which is a given parameter.

5 Two examples

In this section two simple examples are given to

verify the transfer matrix method. The first exam-

ple shows the calculation of the electric field for a

defined frequency perturbation. The second example

shows how to apply the method for tuning a required

electric field using a frequency perturbation.

Fig. 1. The simplest frequency shift approxi-

mation: 3 sections with the same length.

Example 1 A given frequency shift distribution

as shown in Fig. 1 can be expressed as:

f =















f0 +∆f 0 6 z 6 L

f0 L < z 6 2L

f0−∆f 2L < z 6 3L

. (22)

The transfer matrix for the whole cavity can be ob-

tained by:

M = M3
•M2

•M1 =





cos(kL)
1

k
sin(kL)

−k sin(kL) cos(kL)



 •





1 L

0 1



 •





ch(kL)
1

k
sh(kL)

ksh(kL) ch(kL)



 . (23)

Then the electrical field can be written as:
(

E

E′

)

f

= M

(

E

E′

)

i

= M3M2M1

(

E

E′

)

i

. (24)

Now we introduce two restrictions:

a) The electric field is fixed at the discrete points

as calculated with the transfer matrix. We define

a linear change of the field between each 2 adjacent

points, which is similar to the case of transverse par-

ticle motion.

b) The stored energy in the cavity is unchanged.

This means

LT∫

0

E2dl =constant, which is used to cal-

culate E0. The other initial parameter E ′

0 is defined

as 0 according Eq. (20).
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For the given parameters f0 = 324 MHz, ∆f =

1 MHz, L = 1 m, we get the following transfer ma-

trix:

M3 =





cos(kL)
1

k
sin(kL)

−k sin(kL) cos(kL)



=





0.8616 0.9534

−0.2702 0.8616



 ,

(25)

M2 =





1 L

0 1



=





1 1

0 1



 , (26)

M1 =





ch(kL)
1

k
sh(kL)

ksh(kL) ch(kL)



=





1.145 1.0479

0.3081 1.145



 .

(27)

Then the electric field can be calculated as follows:

ET = M3
•M2

•M1
•(E0,E

′

0)
T

(E1 E2 ET ) = (1.145 1.4531 1.5457)E0 ,
(28)

which finally leads to

ET =



















(1+0.145x)E0 0 6 x < 1

(0.8369+0.3081x)E0 1 6 x < 2

(1.2679+0.0926x)E0 2 6 x 6 3

. (29)

Since the integration of E2 along the cavity is a con-

stant, we get for the electric field with perturbation:

3L∫

0

E2
T dx = 12

•(3L). (30)

From Eqs. (29) and (30) we then obtain E0 = 0.77.

This means that the electric field with perturbation

is reduced to 77% of the field without perturbation.

The electrical field along the cavity is shown in

Fig. 2.

Fig. 2. The electric field with perturbation ob-

tained by the transfer matrix.

A higher number of sections will increase the pre-

cision of the calculated field distribution.

Example 2 In Fig. 3 the electric field distri-

bution designed for the DTL tank-1 in CSNS is

shown. But the mechanical structure generated by

PARMILA can only provide a linear electric field dis-

tribution, which is shown in Fig. 4. Here we will use

the transfer matrix method to calculate the required

frequency perturbation which can change the electric

field such that it coincides with the designed one.

First we will introduce a frequency shift as a

perturbation. Anticipating it is better to change

the frequency smoothly, we select the first 3 cells

and cell no.22, and 23&24 as the 2 perturbation

sections[5].The 2 sections have the length 0.228 m and

0.336 m. The stored energy is obtained from the elec-

tric field shown in Fig. 3.

8∫

0

E2
T dx =

2.11∫

0

(2.2+0.4265x)2dx+3.12×5.86 = 71.274 .

(31)

Fig. 3. The designed DTL electric field distri-

bution in CSNS.

Fig. 4. The electric field obtained from struc-

ture generated by PARMILA.

Now the cavity is separated into 4 sections: from

0 to 0.228 m (frequency changing part), from 0.228 to

1.888 m (drift part); from 1.888 to 2.224 m (another

frequency changing part); and from 2.224 to 7.988 m

(drift part). If we get the transfer matrix of each part,

the electric field along the cavity will be fixed from

them. (The geometry data used here are taken from

the DTL tank-1 design in CSNS.)
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Comparing with the linear distributed electric

field, we see that one needs to “defocus” the initial

electric field to get a tilt and “focus” the field on the

changing point. So one introduces the frequency shift

f1 and −f2 (in MHz) separately in the 2 sections.

Now the transfer matrix along the cavity can be

written as follows:

M1 =





ch(0.5331
√

f1×0.228) sh(0.12155
√

f1)/0.5331
√

f1

sh(0.12155
√

f1 )×0.5331
√

f1 ch(0.5331
√

f1×0.228)



 , M2 =





1 1.66

0 1



 ,

M3 =





cos(0.5331
√

f2×0.336) sin(0.1791
√

f2)/0.5331
√

f2

−sin(0.1791
√

f2 )×0.5331
√

f2 cos(0.5331
√

f2×0.336)



 , M4 =





1 5.764

0 1



 .

The required tilt is 0.4265 MV/m (see Fig. 3),

while the designed initial electric field is E0 =

2.2 MV/m. So the frequency shift f1 is obtained as

2.985 MHz and the matrix M1 is then given by:

M1 =





1.022 0.2297

0.1940 1.022



 .

The frequency shift −f2 should “focus” the elec-

tric field, i.e. it must change the tilt from 0.4265 to 0.

The electric field E2 after the first drift section is cal-

culated from the matrices M1 and M2. From this we

get the frequency shift f2 = 1.488 MHz. The matrix

M3 is then given by:

M3 =





0.9762 0.3338

−0.1409 0.9762



 ,

By now we have obtained all transfer matrices and

the electric field can be calculated as follows:




ET

E′

T



=
1
∏

4

Mi
•





1

0



E0 .

(E1 E2 E3 E4) = (1.022 1.344 1.377 1.377)E0 .

Using the condition of Eq. (31), we obtain the ini-

tial electric field E0 = 2.2485 MHz. The electric field

distribution is depicted in Fig. 5.

Fig. 5. The electric field obtained by the trans-

fer matrix method.

The result is also simulated with the MDTFISH

code to check our answer and is shown in Fig. 6. The

result shows that the electric field in the first two sec-

tions is exactly equal to the designed one. But in the

4th drift section it is affected by a phase change. From

Fig. 6 we see that the perturbation from the phase

change can also be compensated for by the transfer

matrix method if necessary.

Fig. 6. The electric field simulated with the

MDTFISH code compared with the designed

field.

Letting the first perturbation f1 be unchanged

and moving the second perturbation −f2 4 m far away

to the cells 39, 40&41, keeps the tilt unchanged. The

initial value E0 of 1.58 MV/m is obtained from the

stored energy of 71.27. Then the peak electric field

is 3.38 MV/m with a tilt of 0.45. In order to com-

pensate for the tilt to zero, a second perturbation of

−1.1 MHz is needed. Using these parameters as in-

put for the MDTFISH code, we get the electric field

distribution shown in Fig. 7. The simulation greatly

confirms the results calculated with the transfer ma-

trix method.

The two examples show that the transfer matrix

method is consistent with the simulation results. On

the other hand, if we measure and obtain a deformed

RF electric field, the transfer matrix method can also

be used to calculate the frequency shift required to

modify the field such that it coincides with the de-

signed one.
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Fig. 7. Moving the perturbation−f2 back-

wards. The electric field is generated by MDT-

FISH.

6 Deviation analysis

From Fig. 6 we see that the simulated field is close

to the designed one, except for the cells located be-

tween those having different phase angles. Applying

the matrix method with a more detailed modification,

one can obtain the improved result shown in Fig. 8.

The ratio of the simulated field to the designed one is

shown in Fig. 9, having a deviation of no more than

3%.

Fig. 8. Simulation result after applying the ma-

trix method twice.

From the deviation analysis we see that the sim-

ulation result is consistent with the design. This will

greatly decrease the difficulty of the field tuning after

mechanical fabrication. From the technique report

of SNS and JPARC we see that the traditional radio

frequency design has not the step of the simulation-

based modification. The measured field has a devia-

tion of 50% in the entrance of DTL, which is shown in

Fig. 10. In the case of a more complicated axial radio

frequency design such as in CSNS, it will be easier

to operate the radio frequency electric field tuning by

applying the modification by the matrix method.

Fig. 9. Ratio of the simulated field to the designed one.

Fig. 10. Measured field (normalized) in SNS
[6]

.

(With slug tuners penetrating to identical

depths, no post couplers).

7 Conclusions

The equations for the electric field distribution in

a radio frequency cavity have the same form as the

equations of motion of a particle in a quadupole. So

the transfer matrix can be used in both cases. With

the matrix solutions, the small ∆f approximation is

not necessarily supposed, as is done in the commonly

used Slater’s theorem. So comparing with the solu-

tions of the differential equations, the transfer matrix

method is more precise and can handle more complex

problems, especially when modifying the cavity to fit

a special electric field distribution.
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