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Abstract The Breit interaction contains singular terms which may lead to an instability in quark-antiquark

bound state calculations. We regularize the Breit interaction by multiplying the singular terms in momentum

space by the form factor µ2/(q2+µ2) such that the interaction is not singular at the origin and the intermediate-

and long-range parts of the interaction remain unchanged. The singular terms in the Breit potential find their

stable contributions in the calculations after being multiplied by the form factor with different powers. Such a

regularized Breit potential with a linear and a relativistically corrected confining potential are applied to the

study of qq̄ bound states. The spectra for most familiar mesons are consistently obtained and agree well with

the experimental data.
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1 Introduction

In the description of hadronic phenomena, non-

relativistic and relativistically corrected potential

quark models have been successfully applied to

describe many properties of low-lying hadronic

states[1—11]. Progress has been made in studying

the hadron bound states and the fine structure of

the mass spectra[1—6]. The success of the potential

model also promotes its applications to scattering

problems[1, 6—9, 12, 13]. However, it is still a challeng-

ing problem to explain all the meson spectra (from

light to heavy) within an appropriate quark-potential

model.

The earliest version of a complete one-gluon ex-

change potential up to the second order in the rela-

tive velocity v is the Fermi-Breit potential (or just the

Breit potential)[14]. Because the Breit potential con-

tains terms which become attractively singular faster

than −1/r2 when r approaches zero, the direct use

of the Breit potential in the Schrödinger equation for

the solution of the qq̄ bound states may lead to an

instability of the solution[12, 14, 15].

In our previous work[16], the meson mass spectra

were calculated using the Breit potential. The wave

functions were expanded into a set of Gaussian basis

functions with different widths. We found that the

results are dependent on the width parameter β and

the number N of the basis functions. They changed

appreciably when β and N were changed. This is the

so-called instability of the solution because a stable

result should be independent of the basis functions

and only depend on the potential parameters and the

wave function used (the expansion coefficients of the

wave function in the chosen basis).

In order to remove the instability we will adopt

the following approach to utilize the Breit interac-

tion in the present work. We regularize the singu-

lar terms in the Breit potential by multiplying them

by the form factor µ2/(q2 +µ2) in momentum space,

where q is the momentum transfer and µ is a mo-

mentum cut-off parameter. This regularization pre-
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serves the intermediate-scale behavior of the poten-

tial terms meanwhile it removes their singular short

distance property. We find that the calculated mass

spectra are completely stable and produce the exper-

imental data with high accuracy if we apply the form

factor to the spin-spin and spin-orbit coupling terms

once and to the orbit-orbit coupling term twice.

On the other hand, we used in our previous

work[16] for simplicity a linear confining potential. In

the present work we will take the linear confining po-

tential as well as a confining potential with a rela-

tivistic correction up to second order in the velocity

v. We find that the results for both of the two con-

fining potentials are consistent.

The paper is arranged as follows. In section 2 we

discuss the potential we use and the regularization

of the Breit potential. In section 3 the matrix equa-

tion for the bound states of qq̄ and the meson wave

functions are introduced. In section 4, the matrix

elements of the regularized Breit potential and the

confining potential are presented. Finally, we discuss

our results in section 5 and give a summary of the

paper in section 6.

2 Regularization of the Breit poten-

tial

Mesons are quark-antiquark bound states. The

complete one-gluon exchange potential up to O(1/c2)

for these states, the Fermi-Breit potential, can be ex-

pressed in the center-of-mass frame as[17]

V B(r) = Cij αs

{

1

r
− π

2
δ(r)

(m2
i +m2

j )

m2
i m

2
j

+

1

2mimj

(p2

r
+

r ·(r ·p)p

r3

)

−

2π

3mimj

(σi ·σj)δ(r)− 1

4mimjr3
(r×p)×

[

(

2+
mj

mi

)

σi +
(

2+
mi

mj

)

σj

]

−

3

4mimjr3
S r

ij

}

+Cij(−V0) , (1)

where Cij is the color matrix, αs is the QCD coupling

constant, r = |r| = |r1 −r2| is the distance between

quark i and quark j, mi and mj are the masses of the

constituent quarks, p≡pi =−pj is the quark momen-

tum, si =
1

2
σi is the spin of the quark i. In Eq. (1),

the last term is a constant potential used to adjust

the meson mass in solving the Schrödinger equation,

and

S r
ij =

(r ·σi)(r ·σj)

r2
− 1

3
(σi ·σj) (2)

is the tensor-force operator. The average of S r
ij over

r is zero. In calculations we find that the effect of the

tensor-force term is small after regularization and can

be neglected.

From Eq. (1) one can see that the Breit inter-

action contains terms becoming singular faster than

1/r2 when r approaches zero (notice that δ(r)∼ r−3

and p∼ r−1). This singularity may lead to an insta-

bility of the solution for qq̄ bound states[12, 14, 15]. In

order to obtain stable solutions for the bound states

we regularize the Breit potential by multiplying these

singular terms by the form factor µ2/(q2+µ2) in mo-

mentum space. Here q is momentum transfer and

µ is a momentum cut-off parameter. With this ap-

proach the singular terms are regularized at short

relative separations (large momentum transfer) and

they nonetheless retain the same form at large rela-

tive separations (small momentum transfer).

In momentum space the Breit potential can be

expressed as[7, 18—20]

V B(p,q) = Cij(4παs)

{

1

q2
−

(m2
i +m2

j )

8m2
i m

2
j

+

1

mimj q2

[

p2− (p ·q)2

q2

]

− 2

3

(σi ·σj)

4mimj

+

1

4mimj

(iq×p)

q2
·
[

(2+
mj

mi

)σi +

(2+
mi

mj

)σj

]

}

+Cij(2π)3(−V0)δ(q) , (3)

where p =
1

2
(κ′ + κ), q = κ′ −κ, κ and κ′ are the

relative momenta of the two quarks in the initial and

final state respectively[8]. We next discuss the regu-

larization of the terms in Eq. (3) one by one, and then

transform the regularized interactions into coordinate

space.

The first term in Eq. (3), the color-Coulomb po-

tential, needs not to be regularized. Denoting the

ith term in Eq. (1) with V B
i and using UB

i for the

corresponding regularized potential, we get

UB
1 (r) = V B

1 (r) = Cij αs

1

r
. (4)

For the second term in Eq. (3), the regularized

form in momentum space is

−Cij(4παs)
(m2

i +m2
j )

8m2
i m

2
j

µ2

q2 +µ2
.
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Transforming it into coordinate space, we have

UB
2 (r) =−Cij αs

(m2
i +m2

j )

8m2
i m

2
j

(µ2e−µr

r

)

. (5)

The third term in Eq. (3) is the orbit-orbit cou-

pling interaction. We find that it is a main source

of the instability in the calculations and this insta-

bility can not be removed if we apply the form fac-

tor only once to this term. So in our regularization

we multiply the term twice by the form factor. The

corresponding regularized form of the interaction in

coordinate space is then

UB
3 (r) = 2V ′

3 (r)−(1−e−µr)V B
3 (r)−

Cij αs

2mimj

(µre−µr)
{p2

r
− r ·(r ·p)p

r3

}

, (6)

where

V ′
3 (r) = V B

3 (r)+
Cij αs

mimj

{

−e−µr
[p2

r
− r ·(r ·p)p

r3

]

+

µ−2r−2
[p2

r
−3

r ·(r ·p)p

r3

]

−

µ−2(µ+r−1)
e−µr

r

[p2

r
−3

r ·(r ·p)p

r3

]

}

. (7)

The fourth and fifth terms in Eq. (3) are the spin-

spin and spin-orbit interactions. We regularize them

by multiplying with the form factor in momentum

space. Their regularized expressions in coordinate

space are

UB
4 (r) =− Cij αs

3mimj

(σi ·σj)
(µ2e−µr

2r

)

, (8)

UB
5 (r) =− Cij αs

4mimj

(L ·σ)

r3

[

1−(1+µr)e−µr
]

, (9)

where L = r×p and σ =
(

2+
mj

mi

)

σi +
(

2+
mi

mj

)

σj.

The last constant term in Eq. (3) does not need

to be regularized,

UB
6 (r) = V B

6 (r) = Cij(−V0). (10)

In addition to the Breit potential, the interaction

between the quark and antiquark also includes the

confining potential, which is usually taken to be pro-

portional to their separation r[8, 19]:

V c(r) =−Cij

(3

4
b
)

r , (11)

where Cij is the same color matrix as in the Breit

potential and b is a string tension coefficient. Using

the standard QED scattering amplitude technique[18],

one can get the confining potential up to O(1/c2) as

V c(p,q) = Cij

{

bs +bv

q4
− (m2

i +m2
j )

8m2
i m

2
j

bs +bv

q2
−

(m2
i +m2
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2m2
i m

2
j

bs p
2 +p ·q

q4
+
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4mimj

(mj
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σi +
mi

mj

σj

)

· iq×p

q4

}

,

(12)

where bs and bv are the string tension coefficients for

the scalar and vectorial interactions. In coordinate

space the confining potential is given by

V c(r) = Cij

{

−
(3

4
b
)

r−
(3

2
b
) (m2

i +m2
j )

8m2
i m

2
j

1

r
−

(3

2
a
)(m2

i +m2
j )

8m2
i m

2
j

[

−rp2 +
1

r
(ir ·p)

]

−

3(b−a)

16mimjr
L ·

(mj

mi

σi +
mi

mj

σj

)

}

, (13)

where b = (bs + bv)/(6π) and a = bs/(3π). They are

two adjustable parameters related the the confining

potential. One can see that the first term in Eq. (13)

is the linear confining potential usually used, Eq. (11).

It can also be seen that the powers of r for the terms

in Eq. (13) are greater than −2. So there is no need

for regularizing the confining potential.

The quark-antiquark regularized potential is then

U(r) = UB
1 (r)+UB

2 (r)+UB
3 (r)+UB

4 (r)+

UB
5 (r)+UB

6 (r)+V c(r). (14)

3 Meson bound-state matrix equation

and wave function

The Schrödinger equation for meson bound states

in coordinate space is

p2

2µr

Φ(r)+U(r)Φ(r) = EΦ(r), (15)

where µr = mimj/(mi+mj), p, and r are the reduced

mass, center-of-mass momentum, and relative coor-

dinate between the quark and antiquark respectively,

Φ(r) is the meson wave function. The energy E and

the total mass M of the meson satisfy E = M−mi−mj.

We expand the meson wave function Φ(r) into a

set of basis functions φnl(r):

Φ(r) =
∑

n

anφnl(r). (16)

Inserting this expansion into Eq. (15) and multiply-
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ing each term by φ†

ml′ (r) from the left, we get

∑

n, l

an

[

φ†

ml′(r)
p2

2µr

φnl(r)+φ†

ml′(r)U(r)φnl(r)

]

=

E
∑

n, l

anφ†

ml′ (r)φnl(r) . (17)

By integrating this equation over the whole coordi-

nate space, we obtain

∑

n, l

an

[

Tmn +Umn

]

= E
∑

n, l

anBmn , (18)

where

Tmn = 〈ml′|T |nl〉= (2π)3
∫
drφ†

ml′ (r)
p2

2µr

φnl(r) ,

(19)

Umn = 〈ml′|U |nl〉= (2π)3
∫
drφ†

ml′ (r)U(r)φnl(r) ,

(20)

Bmn = 〈ml′|nl〉= (2π)3
∫
drφ†

ml′ (r)φnl(r) . (21)

In the present paper we use the same basis func-

tions as in Ref. [8]. In coordinate space they are given

by

φnl(r) = Rnl(r)Ylml
(r̂) = Nnl r

l exp
(

−nβ2

2
r2

)

Ylml
(r̂) ,

(22)

where

Nnl =
(
√

2 i)l

4π

√

(2/
√
π)3

(2l+1)!!
(nβ2)

1

2
(l+ 3

2
) , (23)

and β is the width parameter of the basis. In our cal-

culations we take the same β values for the mesons

as in Ref. [8]. The radial basis wave functions Rnl(r)

are products of rl with Gaussian functions of differ-

ent widths. The advantage of using Gaussian bases

is that one can get analytical expressions for the ma-

trix elements. Then, the expansion coefficients can be

determined by solving the Schrödinger equation nu-

merically. In the calculations, we take six Gaussian

basis functions (n = 1, 2, 3, 4, 5, 6) as in Refs. [8, 22].

4 The matrix elements of the regular-

ized potential

In this section, we calculate the matrix elements

of the regularized potential. After knowing the ma-

trix elements used in Eq. (18) one can obtain the

eigen values of E by solving Eq. (18) numerically and

finally obtain the meson masses.

In general the matrix elements of the interaction

potential can be expressed as

Umn =
∑

mlms

∑

m′

l
m′

s

〈lmlsms|JmJ〉〈l′m′
ls

′m′
s|Jm′

J〉×

(2π)3
∫
drφ†

ml′(r)χ†

sm′

s
c†(ij)U(r)φnl(r)×

χsms
c(ij), (24)

where l, S, and J are the quantum numbers of the

orbital angular momentum, the spin, and total an-

gular momentum of the meson. ml, ms and mJ are

the corresponding magnetic quantum numbers, χsms

is the spin wave function, and c(ij) is the color wave

function of the meson.

Below we give the matrix elements of the regular-

ized potential Eq. (14) for the states with l =0 and

1 which we consider in this paper. Because deriving

the final results is a rather cumbersome procedure,

we give here only the results. For the first term in

Eq. (14) the matrix element is given by

(UB
1 )mn =

Cfαs

(2π)1/2
β

2(l+1)l!

(2l+1)!!

√
m+nBmn , (25)

where Cf =−4

3
,

Bmn = (2π)3
∫
drφ†

ml′ (r)φnl(r) =

(2
√

mn

m+n

)l+3/2

δl′l . (26)

For the second term in Eq. (14) the matrix element

is given by

(UB
2 )mn = −Cfαs

(m2
i +m2

j )

8m2
i m

2
j

Alµ
2×

[

(1− l)w1 + lw3

]

, (27)

where

Al =
2(l+2)

(2l+1)!!
√
π

β(2l+3)(mn)
1

4
(2l+3), (28)

wn =

∫∞

0

dx ·xne(−νx2−µx), (n = 0,1,2, · · · ), (29)

and ν =
1

2
β2(m+n). The explicit expressions of wn

can be found in Appendix A. For the third term in

Eq. (14) the matrix element is given by
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(UB
3 )mn = (V3)mn−

Cfαs

mimj

Al(nβ2)

{

l!

νl

4l

µ2
+

[

(1− l)µ2−4l
]w1

µ2
+

[

(1− l)µ2−8l
]w2

µ
−

lµw4

}

+
Cfαs

mimj

Al(n
2β4)

{

l!

ν(l+1)

2

µ2
−

4(1− l)
w1 +w2
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−

[

4l+(l−1)µ2
]w3
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−

4l
w4

µ
− lw5

}

, (30)

where

(V3)mn =
Cfαs

mimj

β3 4mn√
m+n

Bmn

(2π)1/2
, (l = 0), (31)

(V3)mn =
Cfαs

mimj
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(2π)1/2

2ll(l−1)!

(2l+1)!!

{

(l+1)
4mn√
m+n

−

(l−1)
(m+n)3/2

2

}

, (l > 0). (32)

For the fourth term in Eq. (14) the matrix element

is given by

(UB
4 )mn =− Cfαs

3mimj

Al

[

s(s+1)−3/2
]

µ2
[

(1−l)w1+lw3

]

.

(33)

For the fifth term in Eq. (14) the matrix element is

zero for l = 0. For l > 0 it is given by

(UB
5 )mn = Cf

√
6αs

4mimj

(

4+
mi

mj

+
mj

mi

)

×

(ŝ)2 l̂
√

l(l+1)(−1)l×
[ β3

(2π)1/2

2l(l−1)!

(2l+1)!!
(m+n)3/2Bmn−

Al(w1 +µw2)
]

×

(−1)1+J

{

s s 1

l l J

}











s s 1

1

2

1

2

1

2











, (l > 0),

(34)

where the symbol Â denotes
√

2A+1. For the con-

stant term in Eq. (14) the matrix element is

(UB
6 )mn = Cf (−V0)Bmn . (35)

The matrix elements for the terms of the confining

potential Eq. (13) are given by

(V c
1 )mn =−Cf

3b

(2π)1/2β

2l(l+1)!

(2l+1)!!

Bmn√
m+n

, (36)

(V c
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(3

2
b
)(m2

i +m2
j )

8m2
i m

2
j

(UB
1 )mn

αs

, (37)

(V c
3 )mn = −Cf

(3

2
a
)(m2

i +m2
j )

8m2
i m

2
j

Al

{

(l+2)!

2ν(l+3)
n2β4−
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nβ2 +

ll!
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, (38)

(V c
4 )mn = Cf

3(b−a)

4

√
6

4mimj

(mi

mj

+
mj
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)

×

ŝ2 l̂
√

l(l+1)Al

(−1)ll!

2ν(l+1)
×

(−1)1+J

{

s s 1

l l J

}











s s 1

1

2

1

2

1

2











. (39)

Additionally, the kinetic energy matrix element is

given by

Tmn = (2l+3)
mn

m+n
Bmn

β2

2µr

. (40)

5 Results

In Table 1 we list the experimental masses of

28 mesons, our calculated results with the regu-

larized Breit potential, the results from previous

literature[8, 9], and the expanding coefficients of the

meson wave functions for the linear confining poten-

tial. For comparison we list in the brackets in the

third column the results calculated with the relativis-

tically corrected confining potential. It can been seen

that the results for both confining potentials are al-

most consistent. In our model, the adjustable pa-

rameters are the confining potential parameters a and

b, the constant potential term V0, five quark masses

mu = md, ms, mc, mb, the momentum cut-off param-

eter µ in the form factor, and the expanding coeffi-

cients of the wave functions into the Gaussian basis[8].

In the calculations we employ the running coupling

constant, αs(Q
2) =

12π

(33−2nf) ln(A+Q2/B2)
, as in

Ref. [8]. Here Q2 is the square of the experimen-

tal mass of the meson, nf is the flavor number of

the meson, and A and B are taken to be 10 and

0.31 GeV as in Ref. [8]. Our input quantities are

the 28 experimental meson masses. The values of the

adjustable parameters are determined by minimizing

the χ2 between the 28 experimental meson masses

and the corresponding calculated meson masses. For

the results corresponding to the linear confining po-

tential Eq. (11), the values of the adjustable potential

parameters are: b = 0.197 GeV2, V0 = −0.597 GeV,
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Table 1. Results of meson masses and the expanding coefficients {an} of the wave functions. The masses are

quoted in GeV.

meson Mexp Mth M [9] M [8] a1 a2 a3 a4 a5 a6

π(11S0) 0.140 0.140(0.140) 0.143 0.140 −0.030 −3.367 14.570 −32.115 32.589 −12.765

K(11S0) 0.494 0.498(0.507) 0.494 0.495 0.796 −0.069 −1.823 7.019 −8.560 3.736

K∗(13S1) 0.892 0.881(0.888) 0.907 0.904 2.078 −5.338 13.623 −19.485 14.374 −4.249

ρ(13S1) 0.770 0.772(0.772) 0.788 0.774 1.690 −3.801 10.417 −15.690 12.200 −3.813

φ(13S1) 1.020 0.970(0.977) 1.031 0.992 1.016 −1.089 3.367 −4.735 3.467 −0.992

b1(11P1) 1.235 1.253(1.169) 1.397 1.330 1.657 −3.127 7.517 −10.248 7.298 −2.066

a1(13P1) 1.260 1.243(1.181) 1.573 1.353 1.727 −3.474 8.797 −12.819 9.800 −3.029

φ(23S1) 1.686 1.811(1.598) 1.852 1.870 5.222 −20.383 46.688 −63.877 45.176 −12.825

D(11S0) 1.869 1.983(2.019) 1.865 1.913 1.646 −3.357 8.044 −10.453 6.941 −1.788

D∗(13S1) 2.010 2.043(2.072) 1.998 1.998 1.884 −4.319 10.649 −14.677 10.436 −2.958

Ds(11S0) 1.969 2.028(2.039) 1.976 2.000 0.989 −0.781 1.620 −0.810 −0.519 0.554

D∗
s (13S1) 2.112 2.084(2.097) 2.121 2.072 1.184 −1.514 3.808 −4.690 2.911 −0.661

D1(11P1) 2.422 2.522(2.370) 2.408 2.506 1.970 −4.223 9.833 −13.422 9.591 −2.754

D2(13P2) 2.460 2.507(2.486) 2.381 2.514 1.957 −4.199 9.901 −13.695 9.929 −2.901

ηc(11S0) 2.979 3.022(3.006) 2.978 3.033 0.809 −0.111 −0.329 2.576 −3.466 1.585

J/ψ(13S1) 3.097 3.051(3.038) 3.128 3.069 0.908 −0.479 0.812 0.497 −1.596 0.913

hc(11P1) 3.570 3.461(3.438) 3.520 3.462 1.475 −2.259 5.387 −7.261 5.124 −1.441

χc(13P1) 3.525 3.463(3.455) 3.507 3.466 1.504 −2.383 5.776 −7.986 5.796 −1.689

ψ′(23S1) 3.686 3.687(3.662) 3.689 3.693 5.279 −20.781 48.727 −68.050 49.253 −14.387

B(11S0) 5.279 5.385(5.416) 5.272 5.322 2.398 −6.566 15.883 −21.705 15.278 −4.286

B∗(13S1) 5.324 5.399(5.427) 5.319 5.342 2.457 −6.820 16.541 −22.716 16.077 −4.542

Bs(11S0) 5.369 5.411(5.431) 5.368 5.379 1.650 −3.307 7.899 −10.296 6.872 −1.787

B∗
s (13S1) 5.416 5.424(5.444) 5.426 5.396 1.706 −3.532 8.508 −11.287 7.693 −2.063

Υ(13S1) 9.460 9.463(9.454) 9.453 9.495 −0.087 −2.120 7.000 −14.748 14.427 −5.545

χb(13P1) 9.899 9.814(9.814) 9.889 9.830 0.635 0.410 −0.217 0.483 −0.477 0.218

Υ(23S1) 10.020 9.933(9.937) 10.023 9.944 3.337 −9.080 21.357 −33.533 27.020 −8.906

χb(23P1) 10.260 10.163(10.171) 10.257 10.166 3.112 −9.030 18.001 −24.326 17.376 −5.084

Υ(33S1) 10.350 10.331(10.332) 10.359 10.340 −7.363 39.761 −93.973 120.174 −79.911 20.876

mu = md = 0.358 GeV, ms = 0.541 GeV, mc =

1.739 GeV, mb = 5.061 GeV, and µ = 0.918 GeV. For

the results corresponding to the relativistically cor-

rected confining potential Eq. (13), the values of the

adjustable potential parameters are: a = 0.097 GeV2,

b = 0.211 GeV2, V0 = −0.601 GeV, mu = md =

0.351 GeV, ms = 0.505 GeV, mc = 1.718 GeV,

mb = 5.051 GeV, and µ = 1.010 GeV. These values

are in a reasonable range.

As is well-known, an attractive potential that

becomes singular faster than 1/r2 as r approaches

zero rises to the well-known “Landau fall”[12, 14, 15],

in which the wave function collapses and oscillates

without limit as r approaches zero. From Eq. (1)

one can see that the terms corresponding to the δ(r)

function (behaving like r−3 for r∼ 0),

−Cijαsπ

mimj

(

mi

2mj

+
mj

2mi

+
2σi ·σj

3

)

δ(r) ,

and the spin-orbit interaction term,

− Cijαs

4mimjr3
(r×p) ·

[(

2+
mj

mi

)

σi+

(

2+
mi

mj

)

σj

]

,

has alternating signs, whereas the orbit-orbit interac-

tion term,
Cijαs

2mimj

(

p2

r
+

r ·(r ·p)p

r3

)

, is always neg-

ative. Correspondingly, the orbit-orbit potential is

always attractive. Our calculations showed that it

is difficult to obtain stable solutions for the mesons

by applying the regularization only once to the orbit-

orbit potential. However, stable meson spectra can

be obtained by applying the regularization twice to

the orbit-orbit coupling term and once to the other

singular terms. The stable results are independent of

the basis functions used in the calculations.

6 Summary

In summary, we regularized the Breit potential

by multiplying the singular terms by the form factor

µ2/(q2 + µ2) in momentum space. Using the regu-

larized Breit potential and the confining potentials

in the linear and relativistically corrected form, we

calculated the low-lying mesons spectra. We found

that the results for both of the two confining poten-
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tials are in good agreement with the experimental

data. Our calculations indicate that the results of

the the qq̄ bound states are stable for the regularized

potential. Hopefully this regularized potential will

be used in future investigations for the bound states

of baryons as well as some relevant hadron scattering

problems.

The authors would like to thank Drs. H. J. Wang,
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Appendix A:

Useful integration results from Eq. (29)

w0 =
1

2

√

π

ν
e

µ2

4ν

[

1−erf
( µ

2
√

ν

)

]

, (A1)

w1 =
1

2ν
(1−µw0), (A2)

w2 =
1

2ν2

[

− µ

2
+

(

ν +
µ2

2

)

w0

]

, (A3)

w3 =
1

2ν3

[

ν +
ν2

4
−

(

3ν
µ

2
+

µ3

4

)

w0

]

, (A4)

w4 =
1

4ν4

[

−5ν
µ

2
− µ3

4
+

(

3ν2 +3νµ2+
µ4

4

)

w0

]

, (A5)

w5 =
1

4ν5

[

4ν2+9ν
µ2

4
+

µ4

8
−

(

15ν2 µ

2
+5ν

µ3

2
+

µ5

8

)

w0

]

,

(A6)

where erf(x) is error function.


