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Density-dependent potential for
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Abstract We apply a simple density-dependent potential model to the three-body calculation of the ground-

state structure of drip-line nuclei with a weakly bound core. The hyperspherical harmonics method is used

to solve the Faddeev equations. There are no undetermined potential parameters in this calculation. We find

that for the halo nuclei with a weakly-bound core, the calculated properties of the ground-state structure are

in better agreement with experimental data than the results calculated from the standard Woods-Saxon and

Gauss type potentials. We also successfully reproduce the experimental cross sections by using the density

calculated from this method. This may be explained by the fact that the simple Fermi or Gaussian function

can not exactly describe the density distribution of the drip-line nuclei.
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1 Introduction

The extremely diluted matter distribution of drip-

line nuclei has been an attractive topic in nuclear

physics for a couple of decades[1]. The few-body mod-

els for weakly bound neutron halo nuclei have been

well established during these years[2—15]. Various

methods have been used in these models: the varia-

tional approach[2, 3], the cluster-orbital shell model[4],

the two-particle Green’s function method[5], the vari-

ational shell model[6], the coordinate space Fad-

deev approach, and the hyperspherical harmonics

method[7].

A basic assumption of this few-body cluster pic-

ture is that the core is inserted with frozen intrinsic

freedom. But this point may be invalid when the core

is considerably coupled with low excited states or not

bound tightly enough. A few-body model with core

excitation is now being developed[8, 9]. For the lat-

ter condition, we may face more complicate few-body

models by redefining a core. For instance, 6He can be

well described by an α+n+n model[10], but one can

hardly describe 8He by a 6He+n+n model with the

phenomenological core-N interactions. One can solve

a model of α plus four neutrons for 8He[16], but it is

unpractical for us to study the halo nuclei by solving

the five or even more body problem because of the

mathematical difficulty and complication.

The main input values in the few-body calcula-

tion are the interaction parameters. In the three-

body model, a pertinent question is whether the phe-

nomenological interactions, such as the Woods-Saxon

type potential, apply to the drip-line nuclei in which

the core nucleus itself may be weakly bound. The

extremely diluted matter distribution is the charac-

teristic of the halo nuclei. The effective interactions in

the weakly bound nuclei may be correlated with the

matter density. We know that the density-dependent

effective interactions have been successfully applied

to the nucleus-nucleus scattering[17—19] and the clus-

ter structure in nuclei[20—26]. It may be appropriate

to bring this type of potential into the calculation of
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the structure of halo nuclei. In this work we try to

apply the density-dependent potential in the three-

body model for halo nuclei in which the core nuclei

are weakly bound. We test our method by compar-

ing the results with the experimental structure and

reaction data. As the experimental root-mean-square

(rms) radius is always deduced by the reaction cross

section measurements[27—30], in this work we also try

to discuss the effect of the diffused density distribu-

tion on the reaction calculation.

In the next section, we present the potential model

used in our calculations and the results of these cal-

culations are presented in Sect. 3. In Sect. 4 we dis-

cuss the effect of the density function on the reaction

calculation. Sect. 5 is devoted to our summary and

conclusion.

2 Density-dependent potential for a

weakly bound core

The three-body Hamiltonian for the core+N+N

system is

H =

3
∑

i=1

Ti−TG +Vnc(r1)+Vnc(r2)+Vnn(r3), (1)

where Ti, TG are the kinetic operator for the ith par-

ticle and center of mass. Vnc and Vnn are the core-N

and NN potential, respectively. We consider the cen-

tral and spin-orbit interactions for Vnc

Vnc(r) = Vc(r)+Vso(r) . (2)

The spin-orbit part is taken to be

Vso(r) =−Vso

1

r

∣

∣

∣

∣

dVc(r)

dr

∣

∣

∣

∣

l •s . (3)

A density-dependent potential with no deforma-

tion for the central part of core-N interaction can be

written as

Vc(r) =

∫
dr

′ρ(r′)vnn(|r−r
′|), (4)

where r is the core-N distance (Fig. 1). vnn is the

effective NN potential.

Here we assume that the core nucleus has a weakly

bound structure. The density distribution of the core

nucleus ρ can be divided into two parts

ρ(r) = ρc(r)+ρv(r) , (5)

where

∫
ρc(r)dr = Ac,

∫
ρv(r)dr = Av, and Ac+Av = A.

A is the mass number of the core nucleus. The label

c represents the stable part of the core nucleus, and

v represents the valence nucleon(s). The rms matter

radius satisfies the relation[31].

r2
A =

Ac

A

(

r2
c +

Av

A
r2
v

)

, (6)

Fig. 1. Schematic explanation of coordinates

used in the density-dependent potential (with-

out deformation) for the core-N system with

a weakly bound core.

After determining the Hamiltonian, we solve the

Faddeev equations

(Ti−E)Ψi +
3

∑

i=1

ViΨ = 0 (i = 1,2,3), (7)

where Ψ = Ψ1+Ψ2+Ψ3 is the total wave function. These

equations can be efficiently solved by the hyperspher-

ical expansion method for short-range interactions[11].

Vi (i=1, 2, 3) are the two-body potentials described

above. In the three-body cluster picture, one can cal-

culate the matter radius by[10]

r2
A+2 =

A

A+2
r2

A +
1

A+2
〈ρ2〉, (8)

where ρ is the hyper-radius. Using the hyperspher-

ical expansion, one can convert the two-dimensional

partial differential equations (Eq. (7)) into a set of

coupled one-dimensional equations

~
2

2m

[

−
d2

dρ2
+

(Ki +3/2)(Ki +5/2)

ρ2
−

2mE

~2

]

×

χi
ΩiKi

(ρ)+
∑

jΩj Kj

V ij
ΩiKi,ΩjKj

(ρ)χj
Ωj Kj

(ρ) = 0 , (9)

where

V ij
ΩiKi,ΩjKj

(ρ) = 〈ϕ
lxj lyj

j,Kj
(θj)|Vij |ϕ

lxilyi

i,Ki
(θi)〉

is the hyper-angular integration of the two-body in-

teraction. Here Ωi ≡ {(lxi, lyi)Li,(sj ,sk)Sxi}Ji. Ki

is the hyper-angular-momentum. The indexes i, j,k

run through (1, 2, 3) in circular order for three sets of

Jacobi coordinates. The Laguerre polynomial expan-

sion is used to solve these coupled equations[32]. In

order to eliminate the two-body forbidden states, the

supersymmetric transformations[33] can be used for

the two-body potentials. Then the remaining work is
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calculating the potential matrix elements and finding

the eigenvalues for a generalized eigenvalue problem.

An important advantage of this density-

dependent potential for the three-body model is that

all of the potential parameters can be determined

before calculation. The shape of the potential is well

determined by the density distribution and the ef-

fective NN interaction, and the potential strength is

determined by the experimental data of the proper-

ties of the core-N subsystem.

3 Three-body calculation

For simplicity, we apply this method to 8He. The

δ-force and M3Y[34—38] type NN interactions are con-

sidered in the following calculation. The δ-force is

vnn(r) = sδ(r) MeV. (10)

This zero-range approximation has been success-

fully used in the study of the cluster structure of

nuclei[13, 17]. The M3Y type NN effective interaction

is used in the form[35, 36]

vnn(r) = Fv(r) , (11)

where r is the internucleon separation, and F is the

potential strength parameter. The radial shape of

the M3Y interaction used in the present calculation

is given in terms of Yukawa form[37]

v(r) = 7999
exp(−4r)

4r
−2134

exp(−2.5r)

2.5r
−276δ(r) .

(12)

There is no energy-dependent term in this form.

Here the density dependence F (ρ) and the strength

parameter s are determined by the properties of the

the core-N system.

We choose Ac = 4, Av = 2 for the core nucleus
6He. The α density is selected as[38]

ρc(r) =
4

π3/2b3
α

exp

(

−
r2

b2
α

)

, (13)

with bα = 1.1932. The rms radius of 4He is 1.57 fm

according to this density. Then we obtain ρv from the

well-established three-body calculation for 6He[10, 13].

This numerically calculated density and the α density

are shown in Fig. 2.

ρv is numerically calculated from the well es-

tablished three-body model[10, 13]. 4π

∫
r2ρc(r)dr =

4.0;4π

∫
r2ρv(r)dr = 2.0; rc = 1.57 fm, rv = 4.53 fm.

r = 2.49 fm according to Eq. (6). The experimen-

tal rms matter radiuses of 4He and 6He are (1.57±

0.04) fm and (2.48±0.03) fm, respectively[39].

Fig. 2. Density distribution of 6He.

The Woods-Saxon and Gauss type potentials with

standard parameters are also considered for compari-

son. The core-n potentials used in our calculation are

numerically shown in Fig. 3 and Fig. 4. All these sin-

gle particle potentials approximately reproduce the

bound 3/2− (−0.43 MeV) state of 7He. And the 1/2+

Fig. 3. The central part of the core-n potential

used in the three-body calculation.

Fig. 4. The spin-orbit potentials used in the

three-body calculation. Vso = 5.57 MeV for

the folded potential.
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state is bound by 20.58 MeV (the one neutron separa-

tion energy of 4He) which is eliminated by supersym-

metric transformations[32]. The NN potential param-

eters are s =22.01, F=0.68 for l = 0, 2 and s =33.06,

F=0.46 for l = 1. The corresponding spin-orbit po-

tential is shown in Fig. 4. The potential parameters

which are determined by the experimental data of 7He

are given in the corresponding text. As we can see,

the range of standard Woods-Saxon or Gauss type po-

tentials is larger than the density-dependent ones. As

the density function dominates the integral in Eq. (4)

at the long range part by the rapidly disappearing

term exp(−r2/a2), there is little difference between

the two shapes of the potentials calculated from the

zero range and M3Y type NN interactions.

The main results are listed in Table 1. All the

core-n potentials are determined by reproducing the

ground-state properties of 7He. The calculated den-

sity distribution of the last two halo neutrons (ρh)

and the total density of 6He (ρc + ρv) used in the

calculation are shown in Fig. 5. rh (3.09 fm) is less

than rv (4.53 fm). For Woods-Saxon and Gauss type

potentials, rh is 3.86 fm and 3.97 fm, respectively.

As we can see, the density-dependent potential in-

tegrated from the zero range or M3Y type NN in-

teraction can give fairly good results compared with

Woods-Saxon and Gauss type potentials (Table 1).

In fact, as the simple Fermi or Gaussian function can

not exactly describe the density distribution of the

drip-line nuclei, the phenomenological Woods-Saxon

or Gauss type potentials should be modified for the

weakly bound nuclei.

Table 1. The results of the three-body calculation for 8He. DD represents the density-dependent potential.

ρ is the hyper-radius. Woods-Saxon parameters are r0 = 1.2×61/3 fm, a = 0.65 fm. The potential range of

the Gauuss type potential is 2.30 fm. Vnn is in the GPT form Ref. [40] for all cases. The core-n potentials

used in these calculations are shown in Fig. 3 and Fig. 4. Energy and length are given in units of MeV and

fm, respectively.

DD (δ-force) DD(M3Y) Woods-Saxon Gauss Exp.

S2n 2.14 2.10 2.16 2.04 2.140±0.007[41]

rms 2.53 2.51 2.75 2.77 2.52±0.03[39]

〈ρ〉 3.81 3.69 4.85 4.92

Fig. 5. The density distribution of 8He. ρh is

the results of the three-body calculation with

folded core-n potential. 4π

∫
r2ρh(r)dr = 2.0.

rh = 3.09 fm. The total rms radius is rm =

2.53 fm.

From this simple example, we find that the

density-dependent potential used in the three-body

model can give a result which is in good agreement

with the halo structure of 8He. More calculations

can be carried out for other drip-line nuclei using this

method.

4 Reaction calculation

The matter rms radiuses of short-lived exotic

nuclei have been extensively studied by reaction

cross section measurements[27—30]. The Glauber

model[42—46], which is based on the assumed static

matter distribution of nuclei, is an important method

for deducing the rms radius from reaction data[29, 47].

In the Glauber model, the total reaction cross sec-

tion is written as

σR = 2π

∫
∞

0

[1−T (b)]bdb , (14)

where T (b) is the transparency function at impact pa-

rameter b. Assuming the optical limit approximation

with zero-range nuclear interaction, one has

T (b) = exp[−σNN

∫
dsρT(s)ρP(|b−s|)], (15)

where ρi(s) are the thickness functions[45]. For the

projectile, we have ρP(r) = ρc(r) + ρv(r), T (b) =

Tc(b)Tv(b). The average NN cross section σNN and the

static density distributions of both the target (ρT(r))

and the projectile (ρP(r)) are needed to compute the

total reaction cross section. It has been shown that
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this method reproduces the observed cross sections

at 400 and 800 AMeV within 2% for all reactions in-

volving 7Li, 9Be, 12C, and 27Al[47]. So this simple

optical-limit Glauber model has been proved to work

well at relatively high energies[47]. As the recent ex-

perimental data are available[48], we study the effects

of the matter density of 6,8He on the 1H(6He, 6He)

and 1H(8He, 8He) reaction calculation at an energy

near 700 AMeV.

We consider four types of mass density for 6,8He:

1. The numerically obtained density from the above

calculation. We abbreviate it as FB type density in

the following text. 2. The Gaussian core density with

a diffused tail[49]

ρ(r) =
1

π3/2

[

4

b3
c

exp

(

−
r2

b2
c

)

+
N −2

b3
v

r2

a3
v

exp

(

−
r2

a2
v

)]

.

(16)

Table 2. Parameters of density function used in the present study. All the densities are obtained by the same

rms radius of 6,8He.

Tail Gauss Fermi

bc/fm bv/fm av/fm ρG
0 /fm−3 a0/fm ρF

0 /fm−3 a/fm

6He 1.193 2.300 2.848 0.130 2.025 0.118 1.883
8He 1.193 1.771 1.925 0.165 2.058 0.143 1.969

It is denoted as Tail type density in the following

text. 3. The simple Gaussian density

ρ(r) = ρG
0 exp(−r2/a2

0) . (17)

4. The usually used Fermi type density

ρ(r) =
ρF

0

1+exp

[

r−R0

a

] , (18)

where the diffuseness parameter a = 0.54 fm is taken

from Ref. [50]. The other parameters are determined

by the experimental matter rms radius and integrat-

ing the density distribution equivalent to the mass

number of the corresponding nucleus (Table 2).

The results of the reaction calculation are shown

in Table 3. We can see that the cross sections data

can be well reproduced by the FB density. So our

few-body calculation can be supported by this result.

Meanwhile, the Gauss and Fermi density can also re-

produce the cross sections. The Tail density failed

to reproduce σR(6He+p). It is obvious that the total

cross sections are not sensitive to the details of mat-

ter density when we fit the densities to the same rms

radius.

Table 3. The calculated reaction cross sections near 700 MeV/nucleon using FB, Gauss and Tail type density

distributions. The average NN cross section is 43 mb and 42 mb for 6He+p (721 AMeV) and 8He+p

(678 AMeV), respectively
[45]

. The cross sections are given in unit of mb.

σR(FB) σR(Tail) σR(Gauss) σR(Fermi) σ
exp
R

6He + p (721 AMeV) 168.2 180.3 170.3 167.1 161.3±3.7[48]

8He + p (678 AMeV) 196.7 202.8 202.2 198.5 197.8±3.5[48]

Fig. 6. The transparency function T (b) in the

Glauber model calculation.

In Fig. 6 we show the transparency function T (b)

in our Glauber model calculation. The transparency

function T (b) is more sensitive than the total reaction

cross section to the density. The behavior of T (b) cal-

culated from the FB density can only be reproduced

by the Tail density at small b. The Gaussian and

Fermi densities fail to describe the reaction process,

although these two types of density are always used

to deduce the rms radius. This may also be explained

by the fact that they can not exactly describe the re-

alistic matter distribution of the halo nuclei.

5 Summary

In this work we construct a simple density-
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dependent potential model and apply it to calculate

the structure of drip-line nuclei (8He) in which the

core nucleus (6He) is weakly bound. We use the three-

body model by solving the Faddeev equations. We

find that the calculated ground-state properties, espe-

cially the matter distribution, are in better agreement

with experiment than the results calculated from the

Woods-Saxon and Gauss type potentials. We also re-

produce the experimental cross sections by using the

density calculated from our method. According to

our study, the halo density may affect the core-n

(or core-cluster) interactions which are important in

the few-body calculation, and it also affects the reac-

tion calculation in the Glauber model which is exten-

sively used for deducing the matter rms radius. This

density-dependent potential model can be applied to

a wide range of nuclei with different Ac and Av. For

instance, we can calculate 10He for Ac = 4,Av = 4

using the calculated density of 8He. A double folding

potential can be used for the cluster-core or cluster-

cluster interaction. Additionally, deformation can

also be considered for heavier nuclei.
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