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Study of the data taking strategy for a high

precision τ mass measurement *
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Abstract To achieve a high precision τ mass measurement at the high luminosity experiment BESIII, Monte

Carlo simulation and sampling technique are utilized to simulate various data taking cases for single and multi-

parameter fits by virtue of which the optimal scheme is determined. The optimized proportion of luminosity

distributed at selected points and the relation between precision and luminosity are obtained. In addition, the

optimization of the fit scheme is confirmed by scrutinizing a variety of fit possibilities.
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1 Introduction

Because of its relatively large mass and compar-

atively simple decay mechanism, the τ lepton offers

many interesting possibilities for testing and improv-

ing the Standard Model (SM). However, as a fun-

damental parameter in SM, the accuracy of τ mass

(mτ) which is at the level of 10−4 for the time being,

is around four orders of magnitude lower than that

of the other two leptons, electron and muon. There-

fore, the accurate measurement of mτ is still of great

importance for τ physics. Usually, the pseudomass

technique[1, 2] and the threshold scan method are em-

ployed to measure the mτ. The former relies on the

reconstruction of the invariant mass and energy of the

hadronic system in hadronic τ decays while the latter

needs a good understanding of the production cross

section near threshold.

More than fifteen years ago, the most ac-

curate measurement of mτ was obtained by

BES collaboration[3—5] using the threshold scan

method. Recently, the developments of experimental

techniques[6] and theoretical calculations[7—10] have

provided the possibility of measuring mτ with un-

precedented accuracy. Moreover, large τ data are ex-

pected from the upgraded detector BES0
[11], there-

fore, it is of great interest to know what accuracy of

mτ we can expect in the near future.

We devote this paper to the statistical aspect of

mτ measurement. Monte Carlo simulation and sam-

pling technique are employed to simulate various data

taking cases for one-, two-, and three-parameter fit

schemes. The optimal scheme is determined from the

comparison of different kinds of results and the va-

lidity of optimization is confirmed by scrutinizing a

variety of possibilities. The optimized proportion of

luminosity distributed at selected points and the de-

pendence of precision on luminosity are obtained to

provide numerical information for actual data taking.

2 Methodology

For the experiment using the scan method, seve-

ral points, say totally Npt points, need to be taken
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in the vicinity of mτ threshold. By virtue of the

analyzed data, the following likelihood function is

constructed[3—5]:

LF =

Npt∏

i

µNi

i e−µi

Ni!
, (1)

where Ni is the number of observed τ+τ− events

obtained by eµ-tagged final state1) at the i-th scan

point. Here Ni is assumed obeying Poisson distribu-

tion, whose expectation µi is given by

µi(mτ) = [ε •Beµ
•σobs(mτ,E

i
cm)+σBG] •Li . (2)

In Eq. (2), Li is the integrated luminosity at the

point i; ε is the overall efficiency of eµ final state

for identifying τ+τ− events, which includes trigger

efficiency and event reconstruction and selection effi-

ciency; Beµ is the combined branching ratio for decays

τ+ → e+νeντ and τ− →µ−νµντ, or the corresponding

charge conjugate mode; σobs (with mτ as one of pa-

rameters), which can be calculated by the improved

Voloshin’s formulas[7], is the observed cross section

measured at the point i with energy Ei
cm; and σBG

is the total cross section of background channels af-

ter τ+τ− selection. If mτ is set as a free parameter,

the maximization of LF in Eq. (1) yields the best

estimation for mτ.

As a statistical study, the aim is to discover the

scheme which can provide the highest precision on mτ

for a specified period of data taking time or equiva-

lently for a given integrated luminosity. To this end,

the sampling technique is utilized to simulate various

data taking schemes and/or possibilities among which

the optimal one is chosen. For a special scheme, Ni is

sampled according to Poisson distribution and µi is

calculated firstly by Eq. (2), where the following val-

ues are taken: mτ = 1776.99 MeV, B = 0.06194[12],

ε = 14.2%, and σBG = 0.024 pb[4]. As to Ei
cm and Li,

they vary with distinctive simulated schemes. As a

special strategy2) , the energy interval to be studied

is divided evenly:

Ei = E0 +(i−1)×δE, (i = 1,2, · · · ,Npt) (3)

where the initial point E0 = 3.50 GeV, the final point

Ef = 3.595 GeV, and the fixed step δE = (Ef−E0)/Npt

with Npt being the number of energy points. For a

given integrated luminosity (Ltot) it is also appor-

tioned averagely at each point, that is Li =Ltot/Npt.

In actual fit, besides mτ, the other parameters can

also be set free and determined from maximization of

LF in Eq. (1). In the following study, one parameter

mτ is set free firstly, then two parameters mτ and ε;

at last, three parameters mτ, ε, and σBG. For three-

parameter fit, the low bound of σBG > 0 is added

from the physics point of view. In each fit, the fixed

parameters take the values used in the simulation.

For each special scheme (that is for each Npt), in

order to reduce the statistical fluctuation, sampling

is repeated many times (Nsamp=200 in this paper),

the average value and corresponding variance of the

fit out variables are worked out as follows[13]:

X
i
=

1

Nsamp

Nsamp∑

j=1

X i
j , (4)

S2
X(X i) =

1

Nsamp−1

Nsamp∑

j=1

(X i
j −X

i
)2 . (5)

where X denotes the free fitting parameter which can

be mτ, ε, and/or σBG. Here it should be noted that i

indicates a certain scheme, whose value can be 1 while

j indicates the sampling times which equals 200 in

the following study. Without special declaration, the

meaning of the average defined by Eqs. (4) and (5)

will be kept in the following study. The general flow

chart of sampling and fitting research is presented in

Fig. 1.

In the process of statistical research, we want to

figure out the following issues:

1) Number of points to be taken;

2) Optimal position of the selected points;

3) Dependence of the required precision on the

needed luminosity.

Fig. 1. The flow chart of sampling simulation,

where i (i = 1,2, · · · ,Npt) indicates certain

scheme and j (j = 1,2, · · · ,Nsamp) sampling

times.

1)For briefness, the eµ channel means τ+ → e+νeν̄τ,τ
−

→ µ−ν̄µντ, and/or its charged conjugate mode τ− → e−ν̄eντ,

τ+ →µ+νµν̄τ.

2) In fact, there may be many strategies to design various data taking schemes. Moreover, the number of data taken points

depends on the distribution of points, and vice versa. Anyway, in the following study, it is found that one parameter can usually

be determined by one point. Therefore, it is enough to merely adopt one kind of strategies for data taking design.
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3 Optimization

3.1 Conclusion of the one-parameter fit

The one-parameter fit has been studied meticu-

lously in Ref. [14] and merely recapitulated here are

the conclusions. When mτ is the only fit parameter,

the research reveals that

1. The optimal position for data taking is located

at the region near the τ+τ− production threshold with

large derivative of the e+e− → τ+τ− cross section to

energy;

2. One point is enough to achieve small error

within the optimal region;

3. The empirical formula of the relation between

fit uncertainty Smτ
and luminosity L can be fitted

based on the data provided in Ref. [14] as follows

Smτ
[keV/c2] =

708.05

L0.504[pb−1]
, (6)

which indicates that 49 pb−1 is sufficient for a statis-

tical precision better than 0.1 MeV/c2.

The conclusions listed here are easy to under-

stand. First, since there is only one free parameter

(mτ) needed to be fit in the τ+τ− production cross

section, one measurement will fix the shape of the

curve. Second, the fitted parameter will be sensitive

to the variation of curve. Mathematically, the varia-

tion of curve can be described by its derivative. So

the sensitive point for mτ will be in the region with

large derivative.

Fig. 2. Two subregions, denoted by . and /,

with different derivative features where the

solid line denotes the observed cross section

and the dashed line the corresponding deriva-

tive value with a scale factor of 10−2.

More remarks are in order here. In Ref. [14] (as

shown in Fig. 2), two regions are selected: the re-

gion . (Ecm ⊂ (3.553, 3.558) GeV) is selected where

the derivative falls to 75% of its maximum while

the region / (Ecm ⊂ (3.565, 3.595)1) GeV) is se-

lected where the variation of derivative is compara-

tively smoother than that in region .. In region .,

the variation of derivative against the energy is fairly

prominent which indicates that such a region will be

sensitive to the horizontal change (that is the change

of energy scale). Therefore, region . is optimal for

mτ which is determined by both the shape of the cross

section curve and the energy scale. Comparatively,

the variation of derivation in region / is smooth, so

it is insensitive to the horizontal change but can be

sensitive to the vertical change. That is to say, it

could be expected that region / will be optimal for

efficiency which determines the overall normalization

of the curve. This guess will be proved by our follow-

ing study relevant to the two-parameter fit.

3.2 Two-parameter fit

In the light of the results of the one-parameter

fit, the first point is fixed at τ threshold (E1 =

3.55379 GeV) to determine the parameter mτ. As to

the new adding fit parameter ε, half of the luminosi-

ty 100 pb−1 is divided evenly into Npt points (Npt =

1, 2, · · · , 20) within the energy region suggested in

one-parameter fit (Ecm ⊂ (3.565, 3.595) GeV). To

determine optimal Npt, mτ is fixed and the only pa-

rameter ε is fit. The results are shown in Fig. 3(a) by

virtue of which we note two points: first, the absolute

value of Sε is much larger than that of ∆ε, so from

the point view of accuracy, the former is much more

crucial than the latter. Therefore, Sε is adopted to

access the fit quality of parameter ε. Second, it is

obvious that one point (denoted as the second point,

E2, hereafter) is enough to afford the smallest fit un-

certainty for ε.

Then with the increasing energy position, the fit

is performed to find optimal position for E2. Fig. 3(b)

shows the distributions of Smτ
and Sε with the vari-

ation of the second point. Also shown are the cross

section and its derivative to energy. It is obvious that

the Sε decreases with the decreasing of the derivative.

Therefore, the optimal position of E2 can be selected

far from the τ threshold at the high energy side, for

example E2 = 3.595 GeV.

1) In fact, the region / could be selected further away from τ threshold. But as indicated from the following simulation, the

uncertainty of τ mass remains almost the same when the upper energy point greater than 3.58 GeV. Therefore the upper-limit of

the scan is not crucial for our further study, that is to say, the upper-limit could be selected with large freedom, such as 3.59, 3.595,

3.6, 3.605 GeV, and so on. Anyway, when the energy is greater than 3.65 GeV the effect due to ψ(2S) resonance will exhibit.

Therefore, the upper-limit of τ mass scan should be less than 3.65 GeV.
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Unlike the one-parameter fit, besides finding the

relation between luminosity and precision, it is also

necessary to know the luminosity allocation between

the first and second points. To this end, for certain

total luminosity, say Ltot = 100 pb−1, the distinctive

allocation schemes are checked and the results are

displayed in Fig. 3(c). Just as expected, with the in-

creasing of L1 (decreasing of L2), Smτ
(Sε) decreases

(increases) correspondingly. The abnormal increasing

of Smτ
at the extreme region where L2 is almost zero,

can be explained as the correlation effect between Smτ

and Sε. By virtue of the curve from fitting the data

in Fig. 3(c), the minimal value of Smτ
can be figured

out as 0.75, or equivalently L1 : L2 = 3 : 1.

To find the dependence of ratio between L1 and

L2 on the total luminosity, we variate the Ltot from

20 pb−1 to 200 pb−1, and for each Ltot, we fit the vari-

ation of Smτ
as shown in Fig. 4(a). Then from each

fit curve, the minimum (that is L1) can be found and

drawn in Fig. 4(b). The linear relation between L1

and Ltot accommodates the fixed slope 0.75. This is

easy to understand since the ratio L1 to L2 reflects

the correlation between Smτ
and Sε which will re-

main the same regardless of the variation of the total

luminosity.

3.3 Three-parameter fit

Based on the results of the preceding section, two

parameters mτ and ε can be determined by the op-

timized first and second points which are located re-

spectively at E1 = 3.55379 GeV and E2 = 3.595 GeV

with the ratio of luminosity between the two points

fixed at 3 to 1. As to the new adding fit parame-

ter σBG, we divide the luminosity 20 pb−1 into 1, 2,

3, 4 or 5 points with the energy ranging from 3.50

to 3.54 GeV (the luminosities for point 1 and 2 are

L1 = 75 pb−1 and L2 = 25 pb−1). The fit results are

shown in Fig. 5(a). It can be seen that the number

Fig. 3. (a) The variations of ∆ε and Sε with the number of points Npt. (b) The variations of Smτ
and Sε

with the scan of the second energy point from 3.554 to 3.595 GeV. The solid line denotes the derivative of

cross section with the scale factor of 0.001 and the dotted line denotes the cross section with the scale factor

of 0.1. (c) The variations of Smτ
and Sε with the increasing of L1.

Fig. 4. The relation between Smτ
and the total luminosity. (a) A series sets of Smτ

vs. L1 for different total

luminosity Ltot variate from 20 pb−1 to 200 pb−1 with a step of 10 pb−1. Overlaid are fits of functions with

the form A+B/(L−Ltot)+C/L based on which the minima of Smτ
are obtained analytically. The bottom

one is the Smτ
vs. L curve in one-parameter fit case. (b) The optimal proportion of the luminosity allotted

at the first energy point E1 =3.55379 GeV for different total luminosity Ltot.
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Fig. 5. The relation between Smτ
and (a) the number of energy points Npt. (b) the position of data taking

point Ecm. (c) the luminosity at the third point L3.

of points has almost no effect on the fit uncertainty of

mτ or in other words, one point (denoted as the third

point, E3, hereafter) is enough to determine the pa-

rameter σBG.

As the second step, with a luminosity of 20 pb−1

for the third point, we perform the fit with E3 =

3.50, 3.51, 3.52, 3.53, or 3.54 GeV, respectively. The

relation between the Smτ
and the energy position is

shown in Fig. 5(b) which indicates that Smτ
is al-

most irrelevant to energy, as long as it is below τ+τ−

threshold. As an example, E3 = 3.50 GeV is chosen

as the third point.

As the third step, we fix the total luminosity as

120 pb−1, and then increase the proportion of the lu-

minosity allotted at E3 to find the dependence of Smτ

on L3. As shown in Fig. 5(c), the smallest Smτ
=

0.096 MeV is obtained when the luminosity equals

12 pb−1, which is about 10% of the total luminosity.

That is to say L3 = 10%·Ltot together with L1/L2 = 3

will lead to the optimal value of Smτ
.

4 Investigation of optimization

As pointed out in Ref. [14], the optimal number of

points depends on the distribution of points and vice

versa. Under the one-parameter fit case, the sampling

technique is employed to take energy points randomly

at the chosen interval, which in principle exhausts all

possibilities and ensures the optimization of the final

scheme. However, such a method is unfeasible for the

multi-parameter fit due to the increasing complexity

of the fit. For example, it is found when two energy

points are too close to each other, the fit always fails

for the two-parameter case. Fully corroborating the

optimization of the aforementioned schemes is out-

side the scope of this paper. As a compromise, some

possibilities are investigated to confirm the previous

optimal results.

As far as the two-parameter fit is concerned, the

energy interval is divided evenly between Ecm = 3.55

and 3.5935 GeV for both E1 and E2, then all possible

combinations between E1 and E2 except for E1 = E2

are fitted, which will definitely lead to the failure of

fit. For the ratio of L1 to L2, three cases 1:1, 3:1, and

9:1 are tested1). The results for the case of L1/L2 = 3

are displayed in Fig. 6, according to which a few

points could be noticed: 1) there exists a rough sym-

metry between E1 and E2 just as expected; 2) there

are two valleys along the values of E1 and E2 near the

mτ threshold, which just correspond to the sensitive

region for mτ fit; 3) along each valley Smτ
decreases

gradually with the increasing of Ecm. All these points

qualify the previous optimal scheme qualitatively.

Fig. 6. The variation of Smτ
with a 2 dimen-

sion scan of E1 and E2 in the energy region

3.55 ∼ 3.595 GeV. The plateau is due to

the adjacency between E1 and E2 which fre-

quently leads to the failure of fit. (For such a

case, Smτ
is arbitrarily set to be a large value,

say, 2 MeV or more).

1)Comparing the minimum of different luminosity ratios, it is found, the ratio 3:1 gives the minimal fit value of Smτ
.
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Fig. 7. The variation Smτ
with (a) L3. (b) the ratio of L1/(L1 +L2). In (a) and (b), Ltot is extended from

100 to 500 pb−1 as illustrated in plots. (c) a two dimension scan of L1/(L1 +L2) and L3, here, the total

luminosity, Ltot =L1 +L2 +L3, is fixed at 120 pb−1.

When turning to the three-parameter fit, the

problem seems more dazzled because of the more

complex correlation among three parameters. How-

ever, intuitively the correlation among different

points would be determined by the line shape of the

cross section and has nothing to do with the total

experiment luminosity. Therefore, it is natural to as-

sume that the relative allocation of luminosity (de-

termined by the correlation between parameters) re-

mains the same with respect to the change of the total

luminosity. Such a feature exhibits for two-parameter

fit. To demonstrate the extensity of this point for

three-parameter fit, two kinds of fit are performed,

namely the relation between the Smτ
and L3 as shown

in Fig. 7(a) and the variation of Smτ
with the ratio of

L1/(L1+L2) as shown in Fig. 7(b). As indicated in the

two plots, the optimal values remain the same just as

expected although the total luminosity enhances from

100 pb−1 to 500 pb−1.

To consolidate our optimal scheme, for the fixed

total luminosity, say Ltot = 120 pb−1, with Ltot =

L1 + L2 + L3, a two dimension scan of Smτ
is per-

formed with respect to L1/(L1 +L2) and L3 and the

results are presented in Fig. 7(c). Clearly, for the

fixed L3, the smallest Smτ
is obtained at the value

L1/(L1+L2) = 0.75 while for the fixed ratio, the small-

est Smτ
is obtained at the value L3 = 12 pb−1, which is

around 10% of the total luminosity. In fact, the small-

est Smτ
can be read directly from the three-dimension

plot, with the coordinates L1/(L1 + L2) ≈ 0.75 and

L3/Ltot ≈ 10%. These values are just what are ob-

tained in Section 3.3.

5 Suggestion on data taking

Using the optimization results obtained in Sec-

tion 3, the relations between Ltot and Smτ
for the

two- and three-parameter fits are drawn in Fig. 8. In

addition, the results for the one-parameter fit[14] are

presented for comparison. Obviously, the more pa-

rameters which need to be fit, the more the luminosity

is required to acquire the same precision. However,

the prominent merit for the three-parameter fit lies

in the fact that the correlation among fit parameters

is taken into account automatically by fit program1).

Therefore, the following discussion is based on the

results of the three-parameter fit.

Fig. 8. Dependence of Smτ
on Ltot for one-,

two- and three-parameter fit schemes. Over-

laid are fits of functions with the form

A/L0.504.

The designed peak luminosity of BEPC/ is

1033 cm−1 · s−1 for Ebeam = 1.89 GeV[15]. If the av-

eraged efficiency of luminosity is taken as 50% of the

peak value, no more than three days data taking can

lead to the precision of Smτ
less than 0.1 MeV. It

should be noticed here that this evaluation is merely

1) In principle, one- and two-parameter fits could also be adopted. However, the correlation between the fitting parameters

and fixed parameter(s) should be considered separately, which is actually a complicated and time-consuming process. Therefore,

from the point view of error analysis, the three-parameter fit scheme is more favorable.
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on a basis of eµ tagged events, according to the previ-

ous BES result[3], the number of multi-channel-tagged

(such as ee, eµ, eh, µµ, µh, hh, where h denotes

hadron) events is at least five times more than those

of the eµ tagged events. If more channels are uti-

lized to tag τ-pair final states, more statistics can be

expected.

To measure the mτ with high accuracy at BES0,

at least three points are needed for the data taking.

The first point with L1 = 67.5% •Ltot is at the large

derivative region, which mainly affects the precision

of mτ; the second point with L2 = 22.5% •Ltot is above

the threshold, which can be used to study the ef-

ficiency of the event selection; and the third point

with L3 = 10.0% •Ltot is below the threshold, which is

crucial for the background determination.

From the point view of BES0 physics analysis,

the data taken above and below the mτ threshold

can also be utilized for R-value measurement and

background study of J/ψ and ψ′ physics. Therefore,

maybe many more data are needed at Point 2 and 3.

As a matter of fact, if the branching ratio measure-

ment of τ decay is taken into account, a considerably

large data sample is needed at the mτ threshold as in-

dicated in Ref. [16]. All these considerations indicate

that a more detailed and systematic plan is required

for the actual data taking in the future.

6 Summary

The statistical uncertainty of mτ measurement at

BES0 is studied in great detail. Three cases, that

is the one-, two-, and three-parameter fit, are consi-

dered and the optimization for each fit case is realized

by virtue of Monte Carlo simulation and sampling

technique. The study reveals some prominent and/or

special characters of mτ measurement. First, the fit

results indicate that one energy point is sufficient to

determine one fit parameter. Second, the luminosity

proportion distributed at different energy points for

the multi-parameter fit is almost fixed and indepen-

dent of the total luminosity. Third, a certain energy

point is more sensitive to one special parameter than

to the others. Furthermore, the optimal scheme for

each fit case is reinforced by checking various possi-

bilities and comparing a great number of fit results.

The suggestions on the data taking for mτ mea-

surement are put forth based on the conclusion of

the three-parameter fit. Moreover, some practical re-

quirements for data taking are also discussed from the

viewpoint of BES0 physics.
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