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Lattice results on nucleon/roper properties *

Huey-Wen Lin1)

(Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606, USA)

Abstract In this proceeding, I review the attempts to calculate the Nucleon resonance (including Roper as

first radially excited state of nucleon and other excited states) using lattice quantum chromodynamics (QCD).

The latest preliminary results from Hadron Spectrum Collaboration (HSC) with mπ ≈ 380 MeV are reported.

The Sachs electric form factor of the proton and neutron and their transition with the Roper at large Q2 are

also updated in this work.
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1 Introduction

Quantum chromodynamics (QCD) has been suc-

cessful in describing many properties of the strong

interaction. In the weak-coupling regime, we can rely

on perturbation theory to work out the path integral

which describes physical observables of interest. How-

ever, for long distances perturbative QCD no longer

converges. Instead, we use a discretization of space

and time in a finite volume to calculate these quan-

tities from first principles numerically; such research

forms the regime of lattice QCD.

To keep the systematic error due to discretiza-

tion under control, one follows Symanzik improve-

ment order by order in terms of the ultraviolet cut-

off (a) for both the action and operators. However,

the breaking of continuous (Euclidean) SO(4) sym-

metry allows many new degrees of freedom, leading

to various lattice actions that return to the same

continuum action once the symmetry is restored.

Thus, there exist many gauge and fermion actions

for us to choose from. Today, most gauge actions

used are O(a2)-improved and leave small discretiza-

tion effects (O(a3Λ3
QCD)) due to gauge choices. On

the other hand, most fermion actions are only O(a)-

improved and have systematic errors of O(a2Λ2
QCD)

that become dominant. For this reason, lattice cal-

culations are generally distinguished according to the

fermion action used. Differences among the actions

are benign once all systematics are included, and

the choice of fermion action is constrained by lim-

its of computational and human power and by the

main physics focus. The commonly used actions

are: domain-wall fermions (DWF), overlap fermions,

Wilson/clover fermions, twisted-Wilson fermions and

staggered fermions.

Since the real world is effectively continuous and

infinitely large, we will have to take limits of a→ 0

and V →∞ to eliminate the artifacts introduced in a

discretized finite box. With the most state-of-the-art

supercomputer, we are close but yet to simulate at the

physical pion mass. Using calculations at multiple

heavier pion masses, which are affordable for avail-

able computational resources, we can apply chiral

perturbation theory to extrapolate quantities of inter-

est to the physical limit. A recent work by the BMW

collaboration[1] calculating multiple lattice spacings,

volumes and pion masses as light as 180 MeV pro-

vided an excellent demonstration of how ground-state

hadron masses with fully understood and controlled

systematics are consistent with experiment. Such cal-

culations with multiple pion masses also help to de-

termine the low-energy constants of chiral effective

theory.

A typical nucleon interpolating field used in lat-

tice calculations is χN =
∑

~x,a,b,c
ei~p·~xεabc [uT

aCγ5db]uc,

and the nucleon two- and three-point Green functions

are obtained from
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Γ (2)(tsrc, t) = 〈χN(t)χ†
N(tsrc)〉

Γ (3)(tsrc, t, tsnk) = 〈χN(tsnk, ~psnk)O(t,~q)χ†
N(tsrc, ~psrc)〉,

where O is the operator of interest. For the vec-

tor (axial) current, the operator is O = ψγµ(γ5)ψ.

We calculate only the “connected” diagrams, which

means the inserted quark current is contracted with

the valence quarks in the baryon interpolating fields,

as in the majority of lattice three-point calcula-

tions. For electromagnetic form factors, recent lat-

tice studies[2] have found the disconnected diagrams

contributes only a small amount, consistent with zero

within the statistical error; therefore, we will defer the

study of such diagrams to the future. For more details

on lattice nucleon form factor calculations, please re-

fer to a selection recent review articles[3—5] and refer-

ences within.

2 Lattice roper-resonance calculation

Both in meson and baryon spectroscopy there are

many experimentally observed excited states whose

physical properties are poorly understood and could

use theoretical input from LQCD to solidify their

identification. Aside from masses, other excited-state

quantities that could be computed on the lattice, such

as form factors and coupling constants, would be use-

ful to groups such as the Excited Baryon Analysis

Center (EBAC) at Jefferson Lab, where dynamical

reaction models have been developed to interpret ex-

perimentally observed properties of excited nucleons

in terms of QCD[6, 7]. In certain cases, input from the

lattice may be helpful in determining the composi-

tion of controversial states, which may be interpreted

as ordinary hadrons, tetra- or pentaquarks, hadronic

molecules or unbound resonances.

Among the excited nucleon states, the nature of

the Roper resonance, N(1440) P11, has been the sub-

ject of interest since its discovery in the 1960s. It

is quite surprising that the rest energy of the first

excited state of the nucleon is less than the ground-

state energy of nucleon’s negative-parity partner, the

N(1535) S11
[8], a phenomenon never observed in me-

son systems. There are several interpretations of the

Roper state, for example, as the hybrid state that

couples predominantly to QCD currents with some

gluonic contribution[9] or as a five-quark (meson-

baryon) state[10].

N P11 S11
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Fig. 1. Summary of previous lattice calcula-

tions with extrapolation to the physical pion

mass point or the lowest simulated pion point

(labeled as “†”).

Table 1. Summary of existing published S11 and P11 calculations. Due to space limitations, we adopt

these abbreviations for fermion actions: Domain-Wall Fermions
[11—14]

(DWF), Chirally Improved Dirac

Operator
[15, 16]

(CIDO), Fat-Link Irrelevant Clover
[17]

(FLIC); and for the analysis methods: Variational

Method
[18, 19]

(VM), Constrained Curve Fitting
[20]

(CCF), Maximum Entropy Method
[21, 22]

(MEM), Black

Box Method
[23—25]

(BBM). For those works which do not perform extrapolation, we use the lightest pion

mass to represent their results.

group Nf Sf a
−1
t /GeV Mπ/GeV L/fm method extrapolation

Basak et al.[26] 0 Wilson 6.05 0.49 2.35 VM N/A

Burch et al.[27] 0 CIDO 1.68,1.35 0.35–1.1 2.4 VM a+bm2
π

Sasaki et al.[28] 0 Wilson 2.1 0.61–1.22 1.5,3.0 MEM
√

a+bm2
π

Guadagnoli et al.[29] 0 Clover[30] 2.55 0.51–1.08 1.85 BBM a+bm2
π

+cm4
π

Leinweber et al.[31] 0 FLIC 1.6 0.50–0.91 2.0 VM N/A

Mathur et al.[32] 0 Overlap[33] 1.0 0.18–0.87 2.4,3.2 CCF a+bmπ +cm2
π

Sasaki et al.[34] 0 DWF 2.1 0.56–1.43 1.5 VM a+bm2
π

Early LQCD calculations using the quenched

approximation[27—29, 31, 32, 34, 35], found the computed

spectrum inverted relative to experiment, with P11

heavier than the S11. Fig. 1 and Table 1 show a sum-

mary of parameters used in these works and the ex-

trapolated masses at the physical pion mass. Only

Ref. [32], using the lightest pion mass, seems to ob-

serve a potential mass reversal in their central val-

ues. There is agreement with experimental values

within errors, since the masses of the P11 and S11
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are overlapping within their statistical errorbar. Fur-

thermore, Ref. [36] summarizes most of the published

even-parity LQCD results (Nf = 0) as a function of

pion mass and found big discrepancies in the cal-

culated nucleon first-excited mass, which created an

even more chaotic atmosphere. We re-address the

same issue on left-hand-side of Fig. 2 but sort the re-

sults by the lattice size; we find that the Roper masses

are roughly inversely proportional to lattice size. If

finite-volume effects dominate in these calculations,

we could modified the axes in terms of the dimension-

less quantity ML, as shown on the right-hand side of

Fig. 2. Now we see a better agreement (or universal-

ity) among the LQCD Roper-mass calculations; the

Roper masses agrees within 2 standard deviations of

the numbers in Ref. [32]. This suggests finite-volume

effects can be more severe for excited states than the

ground states and that careful examination of such

systematic errors is crucial. The examples given here

are calculated in a vacuum with gluonic degrees of

freedom only; that is, no sea fermion loops contribute

to the ensembles. Future calculations should remove

this approximation, and more results with Nf =2+1

(degenerate up and down plus strange in the sea)

should be available within the next few years.
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Fig. 2. Summary of published Nf = 0 LQCD calculations of the nucleon and Roper masses in GeV (left) and

in terms of the dimensionless product of the Roper mass and lattice size L (right).

3 Excited nucleon states

In the previous section, we found how difficult it

is to extract the Roper resonance. What if we want

to get to even higher excited states with LQCD? Un-

fortunately, in Euclidean space, excited-state contri-

butions to correlation functions decay faster than the

ground state. Therefore at large times, the signals for

excited states are swamped by the signals for lower-

energy states. One way resolve this issue is to improve

resolution in the temporal direction. An anisotropic

lattice where the temporal lattice spacing is finer than

spatial spacings can provide better resolution while

avoiding the increase in computational cost associ-

ated with a similar reduction of all spacings.

Another method is to use the variational

method[18, 19] on a matrix of source and sink oper-

ators to project more exactly onto the eigenstates of

the Hamiltonian. To do this, we need a large num-

ber of operators that overlap well with excited states

with desired quantum numbers.

Hadron Spectrum Collaboration (HSC) has been

investigating interpolating operators projected into

irreducible representations (irreps) of the cubic

group[37, 38] in order to better calculate two-point cor-

relators for nucleon spectroscopy. In the cubic group,

for baryons, there are four two-dimensional irreps

G1g,G1u,G2g, G2u and two four-dimensional repre-

sentations Hg and Hu. (The subscripts “g” and “u”

indicate positive and negative parity, respectively.)

Each lattice irrep contains parts of many continuum

states. The G1 irrep contains J = 1
2
, 7

2
, 9

2
, 11

2
, · · · states,

the H irrep contains the J = 3
2
, 5

2
, 7

2
, 9

2
, · · · states, and

the G2 irrep contains the J = 5
2
, 7

2
, 11

2
, · · · states. The

continuum-limit spins J of these states must be de-

duced by examining degeneracy patterns among the

different Oh irreps.

Using these operators, we construct an r×r corre-

lator matrix, Cij(t), where each element of the matrix

is a two-point correlator composed from different op-

erators Oi and Oj . Then we consider the generalized

eigenvalue problem
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C(t)ψ=λ(t, t0)C(t0)ψ, (1)

where the selection of t0 depends on the range of va-

lidity of our approximation of the correlators by the

lowest r eigenstates. If t0 is too large, the highest-

lying states will have exponentially decreased too far

to have good signal-to-noise ratio; if t0 is too small,

many states above the r we can determine will con-

taminate our extraction. Over some intermediate

range in t0, we should find consistent results.

If the eigenvector for this system is |α〉, and α

goes from 1 to r. Thus the correlation matrix can be

approximated as

Cij =

r
∑

n=1

vk∗
i vn

j e−tEn , (2)

with eigenvalues

λn(t, t0) = e−(t−t0)En , (3)

by solving

C(t0)
−1/2C(t)C(t0)

−1/2ψ=λ(t, t0)ψ . (4)

The resulting eigenvalues λn(t, t0), called the princi-

pal correlators, are then further analyzed to extract

the energy levels, En. Since they have been projected

onto pure eigenstates of the Hamiltonian, each prin-

cipal correlator should be fit well by a single exponen-

tial. The leading contamination due to higher-lying

states is another exponential having higher energy; a

two-state fit may help to remove this contamination.

Demonstrations of how these operators work us-

ing purely gluonic vacuum with light valence quarks

for nucleon and delta spectroscopy are reported in

Refs. [26, 39, 40]. Further calculations of isospin-
1

2
excited nucleons in two-flavor QCD, using u

and d quarks that have the same mass, are re-

ported in Ref. [41] with 2 pion masses: 416(36) and

578(29) MeV. In this proceeding, we report a further

step toward the goal of determining the spectrum of

nucleon excited states on 2 + 1-flavor lattices[42, 43].

Fig. 3 shows a preliminary results on nucleon spec-

troscopy with pion mass around 380 MeV. The cal-

culation here is done with a new technique, called

“distillation”[44], which has better signal-to-noise ra-

tios than the conventional approach. We observe a

similar distribution of states as the previous study.

Further study on the larger volume and investigation

of decay thresholds and potential two-particle states

are underway.
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Fig. 3. Nucleon excited spectrum according to

cubic-group irrep.

4 Form Factors

Studying the momentum-transfer (Q2) depen-

dence of the elastic electromagnetic form factors is

important in understanding the structure of hadrons

at different scales. There have been many experi-

mental studies of these form factors on the nucleon.

A recent such experiment, the Jefferson Lab double-

polarization experiment (with both a polarized target

and longitudinally polarized beam) revealed a non-

trivial momentum dependence for the ratio Gp
E/G

p
M .

This contradicts results from the Rosenbluth sepa-

ration method, which suggested µpG
p
E/G

p
M ≈ 1. The

contradiction has been attributed to systematic errors

due to two-photon exchange that contaminate the

Rosenbluth separation method more than the double-

polarization. (For details and further references, see

the recent review articles: Refs. [45—47]).

Lattice calculations can make valuable contribu-

tions to the study of nucleon form factors, since

they allow access to both the pion-mass and mo-

mentum dependence of such form factors. Recently,

the limitations of the largest-available Q2 (in terms

of the quality of the signal-to-noise ratios) has been

overcome[48, 49]. An exploratory study using clover

fermions extends the range of momentum transfer to

6 GeV2, as shown in Fig. 4. The range of Q2 lattice

data available for the neutron has now exceeded that

of experiment. Such calculations will provide inter-

esting comparisons for data collected after the future

12 GeV upgrade at Jefferson Lab.
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Fig. 4. Nucleon form factors with pion masses of 480, 720 and 1080 MeV. The dashed lines are plotted using

experimental form-factor fit parameters
[45, 50]
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Fig. 5. Preliminary results on nucleon (top panels) and Roper-nucleon transition (bottom panels) GE form

factors with pion masses of 580 and 780 MeV on dynamical lattices. The dashed lines for the nucleon form

factors are the same as Fig. 4, and the Roper-nucleon black circles and blue triangles are experimental form

factors from CLAS and MAID.

We are also exploring the nucleon and Roper-

nucleon form factors on 2 + 1-flavor anisotropic lat-

tices (Fig. 5)[42, 43]. The methodology is similar to

what is described in Refs. [48, 49]. In this study, the

range of Q2 becomes smaller (as compared with the

cases of Fig. 4) due to the change of the lattice spac-

ing. The proton GE moves closer to the experimen-

tal parametrization lines as the pion mass decreases.

The Roper-nucleon transitions are too noisy to dis-

tinguished according to the pion-mass contribution.



No. 12 Huey-Wen Lin: Lattice results on nucleon/roper properties 1243

Overall, we see a urgent need to improve signal-to-

noise ratios to allow comparison with experimental

data. The new technique of distillation[44] has shown

great potential for getting better signal-to-noise ra-

tios than the conventional approach. We are in the

precess of extending the method to work on form-

factor calculations. We hope soon to report better

lattice calculations and extended our transition form

factors to other excited nucleon states.
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