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Shell-model studies of isomeric states in
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Abstract The yrast bands of *1'253Fe have been studied with a microscopical effective Hamiltonian derived

from the charge-dependent Bonn NN potential. Calculations obtain satisfactory agreements with experimental

data, reproducing the observed isomeric states. The possible origins of the isomers are discussed.
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Nuclei near the center of the 0 f;/5-shell are of par-
ticular interest as they have enough valence particles
to form some degrees of deformation and collective

[

motion The advent of efficient detectors has al-

lowed the investigations of the structures of these

2—4]

nuclei at high spins[ Large-scale shell-model

%% (up to the dimension of around 10°'™)

calculations!
are now possible, giving us much more enriched un-
derstanding to the nuclear many-fermion system than
heretofore possiblels].

Well-defined rotational bands in 0f7/,-nuclei (i.e.,
the even-even nucleus of “*Cr) have been observed',
which can be reproduced well by the nuclear shell
model™” ). For odd-odd N = Z nuclei, the enhanced
pairing correlations™ between the odd-neutron and
the odd-proton can lead to the coexistence of both
T =1 and T = 0 collective bands at low excitation

. (13
energies” .

The evolution patterns of energy dif-
ferences (MED) for mirror nuclei along the N = Z
line in this shell have been successfully extended to
high-spin states, providing a unique ground to study
the effects of charge-independence breaking in nuclear
systems“‘l*w] .

It has been expected that the residual interaction

can produce long-lived spin traps (i.e., with unusual
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spin sequence) in 0 f7/2—nuclei[17].

Classic examples
are the J™=19/2~ isomers in the mirror pair of **Fe
and **Co. For odd-odd N = Z nuclei in this shell,
low-lying isomeric states can be formed with the in-
version of the isovector (with J™ =07") and isoscalar
(with odd-J) states!"”. Recently, the yrast 12+ level
of ®2Fe has also been confirmed as an isomeric state as
a result of the inversion of the 10} and 127 states”.
In this work, spherical shell-model calculations are
done with an effective Hamiltonian derived from the
charge-dependent Bonn (CD-Bonn) Nucleon-Nucleon
(NN) potential™ to study the yrast structures of
the isotopes of %'Fe, ?Fe and ®*Fe. We will show
that the level structures of the Fe isotopes can be
reproduced well by the microscopical effective Hamil-
tonian. The possible origin of the isomeric states in
the yrast bands will also be discussed.

The nuclear shell model restricts calculations
in one or several Harmonic-Oscillator (HO) major
shells™®,

dependent effective Hamiltonian given as

_Q
Ey— H,

The starting-point is an model-space-
[19]

HeffﬁpHop‘f'PHlP‘f'PHl Hlp, (1)

where H, (H,) is the unperturbed (perturbed) Hamil-
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tonian and P and @ the projection operators. FEj is
the unperturbed energy. The first two terms in the
equation give the single-particle Hamiltonian which
can be determined from experimental single-particle
energies. The last term defines the effective interac-
tion which can be directly related to the under-lying
NN interaction'™. The diagonalzation of Eq. (1) can
be done with standard shell-model codes™ **. In the
present work, calculations have been carried out on
the 64-bit Beowulf cluster of the PKU computer cen-
ter with a newly-developed parallel program[ll].

In the present code, the symmetry of spin J is
restored through a projection procedure by which
the dimension of the matrix can be significantly re-
duced. Vectors with good angular momentum J are
expanded in M-scheme HO bases as

@)= Min P7|61n), (2)

m<i
where P7 is the angular momentum projection oper-
ator and |¢) a set of M-scheme bases. M is a lower
triangle matrix ensuring that the projected vectors
are orthonormal. The projection operator is given

a.SlQl]

;T J2—J'(J' +1)
pr= 1l J(J+1)=J(J +1) ®)

J'=J., JI£JT

where J2=J~Jt +J,(J.+1).
The effective interaction can be simply expressed
in the form of HO two-body matrix elements as

V=) > (aBiJ|VId;), 4)
J a<pBy<é
where the Greek letters denote HO single-particle or-
bits. The interaction can be determined phenome-
nally B from experimental observations or micro-
scopically &) from the NN potential[ls].

For fp-shell, effective interactions have been pro-
posed, like the monopole-corrected KB3 interac-
tion!" 22}, the FPD6 analytic two-body potentialm]
and the GXPF interaction®”.

teractions calculated from NN potentials are also

Microscopical in-
available®™. In the present work we employ an
effective interaction!” derived from the CD-Bonn
potential[ls] .
NN potential is handled through the introduction of

the G reaction matrix®. Then the G matrix is renor-

The short-range repulsive core of the

malized through the folded-diagram procedure“g]

which can take into account the core-polarization and

long-range effects.
The Hamiltonian matrix can be calculated in the
j-j scheme basis as
(@] | Hea]) =Y M (@] |Hetll ). (5)
m<j
The diagonalization of this matrix (usually with huge
dimension) can be done iteratively through the Lanc-
Z0s procedurels’ ul,
The shell model is a very efficient tool for the
studies of nuclear level structures™ ' and de-
(25727 The drawbacks of the shell

model lie in the painstaking handling of super-

cay properties

large matrices and the loss of transparency in phys-
ical interpretations. Truncation methods have been
proposedm’ 2% 29 6 make the model more applicable.

The isomeric state of 127 in ®?Fe was first ob-
served in Ref. [17], with the predication of the in-
version of the yrast 10T and 1271 states. Calculated
results for 52Fe are plotted in Fig. 1. As a first ap-
proximation, the maximal number (N,.,,) of parti-
cles being excited out of the 0f7/,-shell is restricted
to two. Full convergence of calculated binding ener-
gies can be seen at the truncation level of N, =5 in
this mass region[?’o]. Shell-model results of the KB3

]

interaction® can be found in Ref. [2].
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Fig. 1. Calculated and experimental[z] yrast
bands of *?Fe.

The inversion of the 12] isomer of *?Fe with the
10 state can be reproduced in present calculations.
By assuming 0 f7,.-dominance, the structures of the
cross-conjugate partners of 52Fe and **Ti should be
similar to each other. In Fig. 2, we show shell-model
calculations for **Ti (a 0f7, system). The yrast 107
and 12 states of *Ti do not convert, which can
be reproduced in full fp-shell calculations by all in-
teractions shown in Fig. 2. When calculations are
restricted to the pure 0f7,>-configuration, however,
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all interactions give reverted results. Fig. 2 indi-
cates that the 0f7 -configuration can give positive
contributions to the formation of the level inversion.
For °2Fe, both 107 and 127 states are dominated by
the 0f;/2-shell, accompanied with similar contribu-
tions from upper sub-shells®. The dominated 0 fr/o-
configuration (four holes in 0f,2) can give rise to
the inversion. Since I = 12 is the maximal spin
that can be reached in the Of;*/z-system, pure 0f7/o-
configuration appears at the 127 state of *Ti. The
energy inversion is not observed due to the existence
of relatively large configuration-mixing for the yrast
10" state. The configuration-mixing can decrease the
relative energy of the 10] state to a position lower

than that of the 12} level.
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Fig. 2. Calculated yrast bands of **Ti in 0f7/2-

(a) and full fp-shell (b). Experimental data
are taken from Ref. [31].

For the odd-A nuclei of 3%%3Fe, calculations are
done with the truncation of N,,,. = 3. Our detailed
calculations on the properties of ®'Fe can be found in
Ref. [16]. In Fig. 3 we plotted the isoscalar band of
%0Mn (with one proton subtracted from *'Fe). For the
decay of the 17/27 state of ' Fe, shell-model calcula-
tions give rather small £2 and M1 strengths, indicat-
ing that drastic structural changes can occur around
the yrast 17/2~ state. The 17/2; state can belong to
the K™ =5/2 ground-state band of *Fe®. Possi-

ble reason for the lowering of the energy of the 17/2~
isomeric state can be due to the breaking of a proton-
pair, which is also expected from the analysis of MED
evolution pattern of the mirror pair 5'Fe and *Mn!".
The result is consistent with Nilsson calculations
which show that the 17/27 state can be the band head
of a three-quasiparticle band with a high K value of

K=17/2.
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Fig. 3. Calculated and experimental[gg] T=0
bands of 5°Mn.

Calculated results for 5*Fe are plotted in Fig. 4.
The inversion of the yrast 17/2~ and 19/2~ states oc-
curs in **Fe. The property of this 17/2~ state should
be different from that of the 17/2~ isomeric state of
51Fe since a relatively strong transition of 17/27 —
15/2 in **Fe is expected™. =
suggest that the thus-formed 19/27-isomer (due to

Nilsson calculations

spin trap) is a K = 19/2 intrinsic state obtained by
the coupling of the odd neutron and a broken pair
of proton. The alignment of particles may occur at
the 67 state of *2Fel”’. The coupling of the odd pro-
ton and the 67 of the *?Fe core may give rise to the

energetically favored 19/2~ spin trap isomer.
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Fig. 4. Calculated and experimental[g] yrast
bands of 5*Fe.
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In summary, the yrast bands of 31'525%Fe have
been studied with a microscopical effective Hamil-
tonian derived from the charge-dependent Bonn NN
potential. Calculations obtain satisfactory agree-
ments with experimental observations, reproducing
the observed isomeric states. Shell-model calcula-
tions suggest that the 0f;/»-configuration interaction
leads to the energy inversion of the 10% and 12*

states of 52Fe, resulting in a long-lived spin trap. The

19/27spin trap in 5*Fe can be due to the particle-
aligned coupling of the odd-proton and the band-
terminated 6 state of >?Fe. The formation of the
17/27 isomer in 5'Fe is due to the drastic changes in

configurations around the state.

We thank the PKU computer Center where the
parallel code has been implanted and numerical calcu-

lations have been done.
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