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Nonadditivity in moments of inertia of high-K

multiquasiparticle bands *
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Abstract The experimental high-K 2- and 3-quasiparticle bands of well deformed rare-earth nuclei are

analyzed. It is found that there exists significant nonadditivity in moments of inertia (MOIs) for these bands.

The microscopic mechanism of the rotational bands is investigated by the particle number conserving (PNC)

method in the frame of cranked shell model with pairing, in which the blocking effects are taken care of exactly.

The experimental rotational frequency dependence of these bands is well reproduced in PNC calculations. The

nonadditivity in MOIs originates from the destructive interference between Pauli blocking effects.
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1 Introduction

In the independent quasiparticle (qp) description

of nuclear structure[1, 2], assuming the energies of the

qp vacuum |0〉〉, 1-qp states α+
i |0〉〉 (i = 1,2, · · · ,n),

and n-qp state α+
1 α

+
2 · · ·α+

n |0〉〉 are E0 = 0 , E(i),

and E(1,2, · · · ,n) respectively, it is well known that

E(1,2, · · · ,n) =
∑n

i=1
E(i) (the additivity of qp ener-

gies). Similarly, if the moments of inertia (MOIs) of

rotational bands built on these intrinsic states are de-

noted by J0, J(i), and J(1,2, · · · ,n) respectively, the

additivity of MOIs is[3]

J(1,2, · · · ,n)−J0 =

n
∑

i=1

(J(i)−J0) . (1)

Define

R(1,2, · · · ,n) =
n

∑

i=1

[J(i)−J0]/[J(1,2, · · · ,n)−J0], (2)

and in the BCS qp description, we have

R(1,2, · · · ,n)|BCS = 1 . (3)

In recent years a lot of low-lying excited rotational

bands built on well-deformed intrinsic multiquasipar-

ticle states were observed[4, 5]. For the well-deformed

rare-earth nuclei with A∼170—185 (Z ∼ 71−74,N ∼

98—108) the single-particle spectrum near the Fermi

surface is dominated by high-Ω (projection of an-

gular momentum along the symmetry axis) orbits.

This special situation gives rise to low-lying high-K

(=
∑

iΩi) multiquasiparticle bands. Assuming the

unpaired nucleons occupy the Nilsson energy levels

with angular momentum projection along the sym-

metric axis, Ω1 and Ω2, respectively, then there exist

two 2-qp bands with K= |Ω1±Ω2|. Similarly, assum-

ing the three unpaired nucleons occupy Nilsson levels

with Ω1, Ω2 and Ω3, then there exist four 3-qp bands

with K= |Ω1±Ω2±Ω3|.

In Section 2 the experimental high-K 2-qp and 3-

qp bands are systematically analyzed and we found

for these observed high-K 2-qp and 3-qp bands,

Rexp> 1, i.e., all of these experimental nuclear MOIs

are nonadditive,

[J(1,2, · · · ,n)−J0]exp<

n
∑

i=1

[(J(i)−J0)]exp . (4)

In Section 3 the microscopic mechanism of multi-

quasiparticle band is investigated with the particle-

number conserving (PNC) method in treating nuclear

pairing interaction, in which the Pauli blocking effects

are taken into account exactly. Two typical examples

are analyzed in detail and we found the nonadditiv-

ity in MOIs comes from the destructive interference

of Pauli blocking effects.
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2 Phenomenological analysis of non-

additivity of nuclear MOIs

In Table 1 we present the experimental R0(1,2)

ratio for the bandhead MOIs of some high-K 2-qp

rotational bands of the rare-earth nuclei

R0(1,2)exp =
[J0(1)−J0]exp +[J0(2)−J0]exp

[J0(1,2)−J0]exp

, (5)

where J0 is the bandhead MOI of the ground-state

band (qp vacuum |0〉〉 band) in an even-even nuclei,

J0(1,2) is the MOI of 2-qp band (∼α+
1 α

+
2 |0〉〉), J0(1)

and J0(2) are the MOIs of 1-qp bands (∼ α+
1 |0〉〉,

α+
2 |0〉〉) in the adjacent odd-A nuclei. In Table 2, we

present the experimental R0(1,2,3) of some high-K

3-qp bands whose intrinsic 3-qp configurations have

been assigned[4]

R0(1,2,3)exp =

∑3

i=1
[J0(i)−J0]exp

[J0(1,2,3)−J0]exp

, (6)

where J0(1,2,3) is the bandhead MOI of the high-

K 3-qp band built on the intrinsic configuration

α+
1 α

+
2 α

+
3 |0〉〉 and K= (Ω1 +Ω2 +Ω3).

From Table 1 and 2 it is found that for all these

high-K 2-qp and 3-qp bands the experimental val-

ues of R0(1,2) and R0(1,2,3) are systematically larger

than 1, i.e.

[J0(1,2)−J0]exp< [(J0(1)−J0)+(J0(2)−J0)]exp, (7)

[J0(1,2,3)−J0]exp<

[ 3
∑

i=1

(J0(i)−J0)

]

exp

, (8)

which implies a significant deviation from the addi-

tivity relation of nuclear MOIs (1) predicted by the

BCS independent qp description.

Moreover, the experimental results also show that

the nonadditivity relation (4) holds not only at band-

head, but also at higher angular momenta (see Fig. 3).

In Secion 3 we will give a microscopic interpretation

for the nonadditivity in MOIs, which turns out to

originate from the destructive interference between

Pauli blocking effects on nuclear pairing.

3 Microscopic mechanism of high-K

multiquasiparticle bands

Now we investigate the microscopic mechanism

of the variations in MOIs of high-K multiquasipar-

ticle bands, including the angular momentum (rota-

tional frequency ω) dependence of MOI, which de-

pends sensitively on the configuration assignment of

multiquasiparticle states, particularly on the Coriolis

response of the Nilsson levels blocked by unpaired

nucleons. It is well known that the pairing inter-

action plays an essential role in the description of

collective motion of deformed nuclei at low spins,

e.g., the pairing interaction is responsible for the ob-

served reduction of MOI compared with that of a

rigid rotor[1]. Usually, the BCS theory of supercon-

ductivity of metal is transplanted to treat the nu-

clear pairing correlation[2]. There is no doubt that

the BCS theory had many achievements in the de-

scription of nuclear pairing correlation, but there

exist some serious defects which should be dealt with

Table 1. The experimental R(1,2) for the bandhead MOIs of some high-K 2-quasiparticle
bands in the well-deformed even-even rare-earth nuclei.

nuclei bandhead-energy/keV Kπ 2-qp configuration reference 1-qp bands R(1,2)exp

162Dy 1485.67 5− ν5/2++ν5/2′− 161Dy+161Dy∗ 1.78
170Yb 1258.46 4− ν7/2++ν1/2− 171Yb∗+171Yb 1.96
170Hf 1773.36 6+

π7/2++π5/2+ 169Lu+169Lu∗ 1.94
170Hf 2183.8 8− π7/2++π9/2− 169Lu+169Lu∗ 2.29
172Hfa 1686.0 6+

π7/2++π5/2+ 171Lu+171Lu∗ 1.92
172Hf 2006.0 8− π7/2++π9/2− 171Lu+171Lu∗ 2.28
172Hf 1858.0 6− ν7/2++ν5/2− 171Hf+171Hf∗ 1.39
174Hfb 1549.18 6+

π7/2++π5/2+ 173Lu+173Lu∗ 2.19
174Hf 1713.41 6− ν7/2++ν5/2− 173Hf∗+173Hf∗ 1.67
174Hf 1797.47 8− π7/2++π9/2− 173Lu+173Lu∗ 2.27
180Hfc 1141.5 8− π7/2++π9/2− 181Ta+181Ta∗ 1.03
176W 1973.1 8− π7/2++π9/2− 175Ta+175Ta∗ 1.16
178Wd 1665.0 6+

ν7/2−+ν5/2− 177W∗+177W∗ 1.25
178W 1738.0 7− ν7/2−+ν7/2+ 177W∗+177W∗ 2.04
182We 1757.0 6+

π7/2++π5/2+ 181Ta+181Ta∗ 1.95
182W 1978.0 7− π9/2−+π5/2+ 181Ta∗+181Ta∗ 1.57

∗ denotes the excited 1-qp band. The experimental data are taken from the Nuclear Data Sheets, except:
a) D. M. Cullen et. al., Phys. Rev., 1995, C52: 2415; b) N. L. Gjørup et. al., Nucl. Phys., 1995, A582:
369; c) S. -C. Wu and H. Niu, Nucl. Data Sheets, 2003, 100: 483; R. D’Alarcao et. al., Phys. Rev., 1999,
C59: R1227.; d) C. S. Purry et. al., Nucl. Phys., 1998, A632: 229; e) T. Shizuma et. al., Nucl. Phys.,
1995, 593: 247.
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Table 2. The same as Table 1, but for some high-K the 3-qp bands in the odd-A rare-earth
nuclei. All the experimental data are from Ref. [4] and references therein.

nuclei bandhead-energy/keV Kπ 3-qp configuration reference 1-qp bands R(1,2,3)exp

163Ho 1504.9 17/2+
π7/2−+ν5/2+ +ν5/2′− 163Ho+ 161Dy +161Dy∗ 1.50

165Tm 1633.3 17/2− π7/2++ν5/2′−+ν5/2+ 165Tm∗+ 165Yb +165Yb∗ 2.59
165Tm 1740.8 17/2+

π7/2−+ν5/2′−+ν5/2+ 165Tm∗+ 165Yb +165Yb∗ 2.58
171Lu 1240.9 15/2− π7/2++ν1/2− +ν7/2+ 171Lu+ 171Yb +171Yb∗ 1.82
177Lu 970.0 23/2− π7/2++ν7/2− +ν9/2+ 177Lu+ 177Hf +177Hf∗ 2.04
177Lu 1325.0 25/2+

π9/2−+ν7/2− +ν9/2+ 177Lu∗+ 177Hf +177Hf∗ 1.87
175Ta 1565.9 21/2− π7/2++π9/2− +π5/2+ 175Ta+ 175Ta∗ +175Ta∗ 1.61
175Ta 1729.3 21/2+

π9/2−+ν5/2− +ν7/2+ 175Ta∗+ 175Hf +175Hf∗ 1.77
177Ta 1698.5 23/2+

π9/2−+ν7/2+ +ν7/2− 177Ta∗+ 177W∗ +177W∗ 2.07
177Ta 2098.2 25/2+

π9/2−+ν7/2− +ν9/2+ 177Ta∗+ 177Hf +177Hf∗ 1.07
179Ta 1317.8 25/2+

π9/2−+ν7/2− +ν9/2+ 179Ta∗+ 177Hf +177Hf∗ 1.85
179Ta 1327.0 23/2− π7/2++ν7/2− +ν9/2+ 179Ta+ 177Hf +177Hf∗ 2.16
163Er 1845.6 19/2− ν5/2++π7/2− +π7/2+ 163Er∗+163Tm∗+163Tm∗ 2.66
163Er 1982.9 19/2+

ν11/2−+ν3/2′−+ν5/2+ 163Er∗+ 163Er∗ +163Er∗ 4.42
163Er 2120.5 19/2+

ν5/2′−+π7/2− +π7/2+ 163Er+163Tm∗+163Tm∗ 1.33
171Hf 1645.3 19/2+

ν7/2++π7/2+ +π5/2+ 171Hf+ 169Lu +169Lu∗ 1.41
171Hf 1984.8 23/2− ν7/2++π7/2+ +π9/2− 171Hf+ 169Lu +169Lu∗ 1.74
173Hf 1077.4 13/2+

ν7/2++ν1/2− +ν5/2− 173Hf∗+ 173Hf +173Hf∗ 2.51
173Hf 1699.7 19/2+

ν7/2++π7/2+ +π5/2+ 173Hf∗+ 171Lu +171Lu∗ 1.25
173Hf 1981.3 23/2− ν7/2++π7/2+ +π9/2− 173Hf∗+ 171Lu +171Lu∗ 1.53
175Hf 1433.3 19/2+

ν7/2++π7/2+ +π5/2+ 175Hf∗+ 175Ta +175Ta∗ 1.20
175Hf 1766.5 23/2− ν7/2++π7/2+ +π9/2− 175Hf∗+ 175Ta +175Ta∗ 1.26
177Hf 1315.0 23/2+

ν7/2−+π7/2+ +π9/2− 177Hf+ 177Lu +177Lu∗ 1.33
177Hf 1343.0 19/2− ν7/2−+π7/2+ +π5/2+ 177Hf+ 177Lu +177Lu∗ 1.31
177Hf 1713.3 25/2− ν9/2++π7/2+ +π9/2− 177Hf∗+ 177Lu +177Lu∗ 1.45
179Hf 1106.0 25/2− ν9/2++π7/2+ +π9/2− 179Hf+ 177Lu +177Lu∗ 1.70
179Hf 1310.5 17/2+

ν7/2−+ν9/2+ +ν1/2′− 179Hf∗+ 179Hf +179Hf∗ 1.87
179Hf 1405.0 23/2+

ν7/2−+π7/2+ +π9/2− 179Hf∗+ 179Ta +179Ta∗ 1.28
177W 1645.5 19/2+

ν7/2++ν5/2− +ν7/2− 177W∗+ 177W∗ +177W∗ 2.70
179W 1832.1 23/2− ν7/2−+ν7/2+ +ν9/2+ 179W+ 179W∗ +179W∗ 1.80
179W 2011.9 23/2+

ν7/2−+π7/2+ +π9/2− 179W+ 179Ta +179Ta∗ 1.40
179W 2088.4 23/2− ν9/2++π5/2+ +π9/2− 179W∗+ 179Ta∗ +179Ta∗ 2.13
183W 1900.3 19/2+

ν1/2′−+ν7/2− +ν11/2+ 183W+ 183W∗ +183W∗ 1.58

∗ the excited 1-qp band.

seriously[3, 6—8], including the particle-number non-

conservation and the blocking effects. Just as Rowe

emphasized[7], while the blocking effects are straight-

forward, it is very difficult to quantify them in the

BCS formalism because BCS introduces different

quasiparticle bases for different blocked levels.

In this article the large variations in MOIs of

high-K multiquasiparticle bands, including the ω-

dependence and the nonadditivity of MOIs, are

investigated by particle-number-conserving (PNC)

method in the frame of Cranked Shell Model

(CSM)[9, 10], in which the particle number is con-

served intrinsically and the Pauli blocking is strictly

kept. The key point of PNC treatment for nuclear

pairing is that a many-particle configuration (MPC)

truncation (or many-body Fock-space basis cut-off) is

used instead of the more common single-particle level

(SPL) truncation. The superiority of the MPC trun-

cation over the SPL truncation has been discussed in

detail in Refs. [11, 12], particularly, the stability of

the MPC basis cut-off has been demonstrated pro-

foundly in an article by H. Moligue and J. Dudek[8].

The CSM Hamiltonian of an axially symmetric

nucleus in the rotating frame is expressed as[9, 10]

HCSM =HNil−ωJx +HP , (9)

where HNil is the Nilsson Hamiltonian, −ωJx is the

Coriolis interaction with cranking frequency ω about

the x axis perpendicular to the nuclear symmetry z

axis, and HP is the pairing interaction

HP = HP(0)+HP(2) ,

HP(0) = −G0

∑

ξη

a+
ξ a

+
ξ̄
aη̄aη, (10)

HP(2) = −G2

∑

ξη

q2(ξ)q2(η)a
+
ξ a

+

ξ̄
aη̄aη,
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where ξ̄(η̄) is the time-reversal state of the Nilsson

state ξ(η), q2(ξ) =

√

16π

5
〈ξ|r2Y20|ξ〉 is the diagonal

element of the stretched quadrupole operator, and

G0 and G2 are the effective strength of monopole and

quadrupole pairing interaction. For details of the so-

lution to the eigenvalue problem of HCSM, please refer

to Refs. [9, 10]. Assuming that an eigenstate of HCSM

is

|ψ〉=
∑

i

Ci|i〉 (Ci real), (11)

where |i〉 is a cranked MPC, then the angular mo-

mentum alignment of |ψ〉 is

〈ψ|Jx|ψ〉=
∑

i

C2
i 〈i|Jx|i〉+2

∑

i<j

CiCj〈i|Jx|j〉, (12)

and the kinematic moment of inertia for the state |ψ〉

is

J =
1

ω
〈ψ|Jx|ψ〉. (13)

The PNC calculations for two typical examples,

the MOIs of the 3-qp band of 171Hf (bandhead en-

ergy 1645.3 keV, Kπ = 19/2
+
) and the 2-qp band of

172Hf (bandhead energy 1858.0 keV, Kπ = 6−) are

given below. In Fig.1 we present the cranked Nilsson

orbital near the Fermi surface of 170Hf. The deforma-

tion parameters ε2 = 0.245, ε4 = 0.014, and κ and µ

are taken from the Lund systematics[13, 14].

In our calculation, HCSM is diagonalized in a suf-

ficiently large cranked many-particle configuration

(CMPC) space, then we can obtain sufficient accurate

solutions |ψ〉 to the low-lying eigenstates of HCSM.

The dimension of CMPC space is 700 for neutron

and 600 for proton. The corresponding effective pair-

ing interaction strengths Gn0 = 0.35 MeV, Gn2 =

0.005 MeV and Gp0 = 0.30 MeV, Gp2 = 0.007 MeV

are determined by the experimental odd-even differ-

ences in binding energies, and no other free param-

eters are involved. It is noted that for the low-lying

excited bands the number of involved important CM-

PCs (with weight > 10−3) is very limited (usually

< 20), so the obtained results are accurate enough.

It is found that the large number of experimental

data of MOIs at various rotational frequencies for

the low-lying excited bands of 171Hf and 171Lu can

be reproduced rather well by the PNC calculations.

It is expected that more satisfactory results may be

obtained by using more realistic single-particle lev-

els than the Nilsson levels (e.g. Woods-Saxon) and

by slightly modifying the effective pairing interaction

strength.

In Fig. 2(a) we present the experimental and cal-

culated ω-dependence of two low-lying excited 1-

quasiparticle bands, ν7/2
+
[633] and ν5/2

−

[512] of
171Lu and 171Hf. As a reference, the experimental ω-

dependence of the ground-state band MOI of 170Hf

is also given in Fig. 2(a). Fig. 2(b) is the same as

Fig. 2(a), but for the 1-qp bands of 171Lu, π7/2
+
[404]

and π5/2
+
[402] bands. Fig. 2(c) is for the 2-qp bands

of 172Hf, 1858.0 keV, Kπ = 6− with configuration

ν7/2
+
[633]⊗π5/2

−

[512]. Fig. 2(d) is the 3-qp bands

of 171Hf, 1645.3 keV, Kπ = 19/2
+

with configuration

ν7/2
+
[633]⊗π7/2

+
[404]⊗π5/2

+
[402]. It is seen that

the experimental MOIs of all these rotational bands

and their ω dependence are well reproduced by the

PNC calculations.

Fig. 1. Nilsson levels near the Fermi surface of 170Hf. ε2 = 0.245, ε4 = 0.014, κ and µ are taken from the Lund

systematics
[13, 14]

. (a) proton, (b) neutron.
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Fig. 2. Comparison of the calculated and experimental MOIs of the quasiparticle bands of 171Lu and 171Hf.
The experimental ground state band of 170Hf is also presented (solid circles •) as a reference. (a) The 1-qp
band of 171Hf, ν5/2−[512] and ν7/2+[633]. The solid (open) triangles and squares are for α = 1/2 (α =−1/2).
(b) The 1-qp band of 171Lu, π7/2+[404], π5/2+[402]. (c) The 2-qp band of 172Hf, 1858.0 keV, Kπ = 6−,
ν7/2+[633]⊗ν5/2−[512]. (d) The 3-qp band of 171Hf, 1645.3 keV, Kπ = 19/2+, ν7/2+[633]⊗π7/2+[404]⊗
π5/2+[402].

Fig. 3. The nonadditivity of MOIs for multiquasiparticle bands. (a) The 2-qp Kπ = 6− band, ν7/2+[633]⊗
ν5/2−[512](α = 0). The stars are for the experimental [J(7/2+[633])−J0]+ [J(5/2−[512])−J0 ] band. The
circles are for the experimental [J(6−)−J0]α=0 band, and the dotted line is the calculated result by PNC
method. (b) The 3-qp Kπ = 19/2+ band, ν7/2+[633]⊗π7/2+[404]⊗π5/2+[402](α = −1/2). The stars are
for the experimental [J(7/2+[633])−J0]+ [J(7/2+[404])−J0]+ [J(5/2+[402])−J0 ]. The circles are for the
experimental [J(19/2+)−J0]α=−1/2, and the dotted line is the calculated result by the PNC method.

Even with no free parameters, our calculation can

still well reproduce so large a number of experimen-

tal data of MOIs for various qp bands. The main

reason is that the Pauli blocking effects on pairing

are taken care of exactly, which is impossible in the

BCS formalism. Fig. 2(a) shows that the MOIs of

ν7/2
+
[633] band of 171Hf are much larger than those

of the ground state band (gsb) of 170Hf at low frequen-

cies (~ω < 0.30 MeV), because the high-j intruder

neutron orbital (i13/2) ν7/2
+
[633] is blocked. The

MOI of the ν5/2
−

[512] (h9/2) band of 171Hf is moder-

ately larger than the gsb of 170Hf, because the Coriolis

response of a 5/2
−

[512] particle is smaller than that of

a 7/2+[633] (i13/2) particle. Fig. 2(b) shows that the

MOIs of π7/2
+
[404] and π5/2

+
[402] bands of 171Lu

are comparable to the gsb of 170Hf. This is because

both orbitals are of deformation aligned[1] and have

very small Coriolis response. From this we can under-
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stand why a lot of 1-qp bands of this kind are almost

“identical” to the gsb of adjacent even-even nuclei[15].

The MOIs of the 2-qp Kπ = 6− band of 172Hf and the

3-qp Kπ = 19/2+ band of 171Hf are much larger than

the gsb of 170Hf at low spins, because the high-j in-

truder neutron orbit ν7/2
+
[633] is involved in both

bands.

The nonadditivity of MOIs of high-K multiquasi-

particle bands is shown in Fig. 3. Fig. 3(a) is for

the 2-qp Kπ = 6− bands of 172Hf. The stars are for

the experimental [J(7/2
+
[633])−J0]+[J(5/2

−

[512])−

J0] (denoted by stars), which is expected to be

equal to [J(6−)− J0] according to the BCS predic-

tion (1). However, the experimental [J(6−)− J0]exp

(denoted by circles in Fig. 3(a)) is smaller than

[J(7/2
+
[633])−J0]exp+[J(5/2

−

[512])−J0]exp. The cal-

culated [J(6−)cal−J0] results are denoted by a dotted

line, which is in agreement with the [J(6−)−J0]exp.

Fig. 3(b) is the same as Fig. 3(a), but for the 3-qp

Kπ = 19/2
+

band of 171Hf.

In summary, the experimental high-K 2- and 3-

quasiparticle bands of the rare-earth nuclei are ana-

lyzed in detail. The observed large variations in MOIs

with the quasiparticle configurations are investigated

by the PNC treatment for the CSM with pairing. The

large number of experimental data of MOIs can be re-

produced well by the PNC calculations without free

parameters. The observed nonadditivity of MOIs for

multiquasiparticle comes from the destructive inter-

ference between the Pauli blocking effects on pairing.
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