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Abstract Working in the physics of Wilson factor and Aharonov-Bohm effect, we find in the fluxtube-

quark system the topology of a baryon consisting of three heavy flavor quarks resembles that of the fractional

quantum Hall effect (FQHE) in condensed matter. This similarity yields the result that the constituent quarks

of baryon have the “filling factor” 1/3, thus the previous conjecture that quark confinement is a correlation

effect is confirmed. Moreover, by deriving a Hamiltonian of the system analogous to that of FQHE, we predict

an energy gap for the ground state of a heavy three-quark system.
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1 Introduction

Understanding the confinement of quarks in

hadrons remains a challenge, notwithstanding a ma-

ture quantum chromodynamics (QCD). The attempts

to explain why quarks are confined in hadrons started

from t’Hooft’s work a quarter of a century ago[1],

and various mechanisms within QCD have been pro-

posed ever since[2—4]. In no mechanisms can we es-

cape the task to reduce the effective degrees of free-

dom of QCD using some gauge fixing conditions to

separate the physical and unphysical parts. Unlike

QED, in a non-Abelian gauge field like QCD, the

physical results can depend on the gauge conditions,

and in general the ghost fields cannot be decoupled

from the vector fields. To understand quark confine-

ment, QCD has been formulated in several gauges.

Under the maximum Abelian gauge fixing condition

it has been proved that the appearance of magnetic

monopoles[1] can provide a picture to explain why qq̄

is confined[2]. The binding of a quark and an anti-

quark can be understood as the result of condensation

of monopoles that squeeze the force between a quark

and an anti-quark to a string, known as linear con-

fining potential. The other most widely used gauge

is the Coulomb gauge[3, 4], in which the contribution

from ghosts lies in the resultant potential. There are

still other gauges used to reduce the gauge symme-

try of QCD in discussing the confinement of quarks,

such as the Landau gauge[5, 6], the temporal gauge[7]

and the axial gauge condition[8]. More directly, some

authors lower the dimension of QCD to QCD2
[9] or

QCD3
[10] to reduce the number of gauge degrees and

then come back to compare the results with QCD4.

But in all of these approaches, we encounter difficul-

ties to derive the interacting potential in the presence

of ghost-vector coupling.

There have been quite a few works[11—13] from the

angle of condensed matter physics conjecturing the

properties of confinement of strong interaction, but

one still lacks solid proofs from the viewpoint of parti-

cle physics or chromo-dynamics supporting these con-

jectures. If the efforts of correlating these two sides

can be realized, the table-top experiments of con-

densed matters can be used to test the speculations

on hadron physics - where we have encountered many

difficulties originating from the confining quarks and

hence the nonperturbative properties.

Here we propose a potential model that does not

fit into the paradigms of the quark–anti-quark con-

finement, based on which we take topological prop-

erties to explain the general quark-confinement in
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hadrons. Inspired by Laughlin’s statement[14] that

quark confinement might come from collective exci-

tation, we have succeeded in choosing a reasonable

gauge condition resembling the physical conditions

for the FQHE to appear (named FQHE gauge here-

after). We find that under the FQHE gauge, the

topology of the three-quark color-singlet system is

equivalent to the topology of the FQHE with a filling

factor of 1/3. In other words, imposing the FQHE to

quark systems would induce naturally the topology of

the FQHE. Together with the heavy-quark approxi-

mation, the FQHE gauge makes the complex interac-

tion between ghosts and vector bosons irrelevant to

quark confinement.

2 Theoretical formulation of the

model

The topology of FQHE[15] depends on that of

Aharonov-Bohm effect[16], and thus on closed Wilson

lines (named as nonintegrable phase factor in some

other references). Since QCD can be equivalently for-

mulated as a theory of Wilson lines, many authors

started with Wilson loops to derive the strong inter-

action between quarks[17—20]. An excellent treatment

in the derivation is to study the systems consisting of

heavy flavor quarks (m�ΛQCD). These systems are

near the perturbative region and the non-relativistic

Schrödinger equation is a fairly good approximation

to leading order. In this paper, without affecting con-

clusions, we qualitively make the quarks in a baryon

have the same masses.

Before studying the topology of QCD, we first re-

duce the degrees of freedom of the three-quark baryon

system. Our model is a hybrid scenario in the sense

of combining the covariant gauge condition ∂µA
µ = 0

and the situation that FQHE happens (FQHE gauge).

The FQHE takes place in a 2-dimensional system pen-

etrated by a vertical magnetic field. Since our focus

here is on the origin and degeneration of the states

in the energy bands, the electric field perpendicular

to the magnetic field in FQHE is neglected in our

discussion. The introduction of such a gauge scheme

forces us to lower the dimension of the interactions

in QCD down to 2. However, as shown in the follow-

ing, the field Aµ here is generated in a way different

from QCD2. In a three-quark color-singlet system,

one quark (hereafter referred to as non-local quark)

moves in the field induced by the other two quarks

(hereafter referred to as di-quark). Evidence for the

existence of stable di-quarks came recently from lat-

tice calculations by Alexandrou et al[21]. The mag-

netic part of the field induced by the di-quark pene-

trates (in contrast to the case of the FQHE not ver-

tically) instantaneously through a plane in which the

non-local quark is located due to momentum and an-

gular momentum conservation. The dynamics of the

non-local quark is determined by the normal QCD

Lagrangian:

L= ψ̄(i 6D)ψ−
1

4
(F i

µν)2−mψ̄ψ . (1)

Here Dµ = ∂µ−igAa
µ

λa

2
(λa are the Gellmann matri-

ces) and F i
µν is defined as

Fµν = F a
µν

λa

2
= ∂µA

a
ν

λa

2
−∂νA

a
µ

λa

2
−

ig

[

Aa
µ

λa

2
,Ab

ν

λb

2

]

, (2)

where Aµ = Aa
µ

λa

2
is the vector field induced by the

di-quark. Gluons are assumed to be massless here.

There are two reasons for us to choose such an or-

dinary Lagrangian for the non-local quark. First,

the di-quark interacts as a whole with the non-local

quark. Second, under the condition that the three-

quark system should be in a color-singlet state, the

di-quark behaves (with respect to color) like an anti-

quark of the non-local quark.

The covariant gauge fixing ∂µA
µ = 0 is imposed

before the non-local quark is required to be located in

a plane. To simulate the situation of FQHE, we fur-

ther idealize the scalar component A0 in Aµ = (A0,A)

to be nontrivial only at infinity or the central inter-

action region (Pauli principle) of the plane. Since we

discuss only heavy quarks (m�ΛQCD) that need not

move too far away from the center of the field induced

by the di-quark to meet the infrared requirement, A0

is taken as zero in what follows. With ∂µA
µ = 0

and A0 ≈ 0, the spatial degrees of freedom of Aµ are

reduced to two1). Under the heavy-quark approxi-

mation, the tree level diagram plus renormalization

give a good description of the scattering amplitude

and the changes of wave functions. The ghosts’ con-

tribution to the wave function, which appears only in

higher order corrections and hence in the renormal-

ization, may not be relevant in our case because the

renormalization will not affect the topology.

Now, let’s turn to the topology of QCD. With the

reduced degrees of freedom, we can write the field

strength Eq. (2) of the di-quark as

B = ∇×A− igA×A , (3)

We note that A lies in the plane, and the second term

1) Here we assume the remaining degrees are just that lying in the plane, e.g., Ax and Ay at any sufficiently short moment.
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prevents B from being perpendicular to the plane1).

Since the quark moves in the plane within a restricted

region, its paths (wave) form loops. It therefore jus-

tifies our use of the form of closed Wilson lines in

non-Abelian fields. In order to show the analogy to

the FQHE, let’s study the Wilson line along an in-

finitesimal closed path. In QCD, the Wilson line is

defined as[14]

UP (x,y) =P
[

e
ig

∫
x

y
Aµ(z)dzµ

]

, (4)

where the symbol P is responsible for the path order-

ing due to the noncommutativity of different Aµ’s in

a non-Abelian field. Except for the noncommutativ-

ity of different parts of the path, Eq. (4) is usually

path-dependent, just as in QED in the presence of a

uniform magnetic field. Thus we use a superscript s

to denote a particular path. The differential equation

for UP (x,y) that holds in QED also works in QCD

along any path[22]:

Ds
µUP (x,y) = 0 . (5)

The denotation s here indicates that the differential

is taken along an arbitrary path s. With Eq. (5) it is

straightforward to verify that the Wilson line Eq. (4)

acts as an evolution factor of the wave function for

massless quarks

ψs
P (x,x0) =U s

P (x,x0)ψ(x0) , (6)

where ψ(x,x0) is the solution of the Dirac equation

(i 6∂−g 6A)ψ(x,x0) = 0 , (7)

and ψ(x0) satisfies (i 6 ∂ −m)ψ(x0) = 0 with m = 0.

If m 6= 0 in Eq. (7), the mass term would contribute

nothing to the phase factor when the path x0 →x(x0)

forms a loop. Therefore, when dealing with closed

paths, we take in the following also for the massive

quarks UP (x,y) as the evolution factor of the wave

function.

A loop (closed path)

UP (x,x) =P
[

eig
∮

Aµ(z)dzµ
]

(8)

defined on the basis of Eq. (4) in a non-Abelian field

is not gauge invariant. So, in order to construct a

gauge invariant Lagrangian of the gauge field, one cal-

culates the trace of Eq. (8) which is a gauge invariant

quantity. Such a quantity is defined as Wilson loop,

from which the effective interaction potential between

heavy quarks can be obtained[18—20]. Here, instead of

calculating the trace, we will focus on Eq. (8) to inves-

tigate the topological property of the wave function

of Eq. (6). Applying Stokes’s theorem to a loop, we

can rewrite Eq. (8) as

UP (x,x) = e
i g
2

∫
Σ

Fµν(z)dσµν

, (9)

where Σ is the infinitesimal surface inside the closed

loop P , dσµν is a differential surface element, and Fµν

is the field strength as defined in Eq. (2). Note that

here in our selected plane, Fµν reduces to the form

shown in Eq. (3). Thus the phase factor in Eq. (9)

has now the form

∫

Σ

B •dS, where dS replaced the

dσµν . Similar to the Aharonov-Bohm phase in QED,

Eq. (9) can be written as

UP (x,x) = ei g
2

φa
0

λa

, (10)

where φa
0 =F a

xyε
2 is the color flux and ε2 denotes the

infinitesimal area enclosed by the loop.

A quantitative discussion of the Aharonov-Bohm

phase of a non-Abelian field needs the definition of

a unit of φa
0 . Let Ω(x) = exp

[

iαa(x)
λa

2

]

be an

infinitesimal transformation near the identity. The

gauge transformation of the vector field Aµ is Aµ →

Ω(x)

(

Aµ +
1

g
∂µ

)

Ω†(x), which can be derived from

the corresponding transformation of the Wilson line

U(x+ ε,x) → Ω(x+ ε)U(x+ ε,x)Ω†(x) by collecting

all coefficients of the terms linear in ε. The transfor-

mation of the Wilson line U(x+ε,x) originates from

the gauge transformation of Eq. (6). Now let’s con-

sider the integral in Eq. (8) after performing a gauge

transformation on Aµ. The original gauge field Aµ(x)

is regular, and so is Ω(x)Aµ(x)Ω†(x). The term

Ω(x)
1

g
∂µΩ

†(x) is singular which can be seen when it

is rewritten as −
1

g
∂µ lnΩ(x) by using ∂µ(ΩΩ†) = 0.

The analysis suggests that in the integral of Eq. (8)

only the singular term Ω(x)
1

g
∂µΩ

†(x) remains. Ex-

panding the transformation of Aµ and collecting the

coefficients of the terms linear in generators λa, one

has

Aa
µ →Aa

µ +
1

g
∂µα

a +fabcAb
µα

c . (11)

From this it seems to be natural to take
1

g
as the

unit of φa
0 . This is so because the phase factor of

Eq. (8) can be rewritten as an integral with integrand
1

g

∂µα
aλa

2
,

eig
∮

1

g
∂µ αa λa

2
dxµ

= ei
∮

λa

2
dαa

, (12)

in which αa becomes formally identical with a wind-

ing angle.

1) Since we concentrate on the stable states of confinement, quantities varying with time are omitted, i.e., E =−

∂A

∂t
= 0
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In our case, the integral path in the evolution

factor of Eq. (6) should form a closed path, i.e.,

ψs
P (x,x0) = U s

P (x,x)ψ(x,x0). To make the defini-

tions of the evolution factor U s
P (x + ε,x) and the

infinitesimal gauge transformation Ω(x) for a wave

function ψ(x,x0) consistent along a definite closed

path, U s
P (x,y) is required to be single-valued along

the closed path. We will show that the Eq. (6) can

be consistent if the topology of the evolution factor

mimics that of the Aharonov-Bohm effect. Let’s put

a particular color to the non-local quark in the plane,

then the symmetry of the vector field Aµ produced by

the di-quark would be SU(2), and the group genera-

tors in the phase factor reduce from those of SU(3) to

the Pauli matrices τ i. For a closed path, the evolution

factor in Eq. (12) would be

ei
∮

λa

2
dαa

→ ei
∮

τk

2
dαk

→ eiπn • τ , (13)

where n = (n1, n2, n3), the ni being real for any given

i(= 1,2,3). By applying ei A·τ = cosA+ i
A ·τ

A
sinA

(where A = |A|), we see that eiπn·τ = 1 only if

|n|= 2k(k-integer). An equivalent, but easier way to

understand the result is making only one of the ni’s

nonvanishing, e.g. n1 =n2 = 0 and n3 = 2k, while the

physical meaning of eiπn·τ will not change with this

particular choice. To put it in another way, only if

the non-local quark has loops with even winding num-

ber does the nonintegrable phase in Eq. (13) have the

same meaning as in the Aharonov-Bohm effect, and

at the same time can the evolution factor of Eq. (6)

for closed paths be defined uniquely and consistently.

In a geometrical picture, the non-local quark moves

around a flux tube of two units, φa
xy = 2φa

0 , but in fact

it winds along the closed edge of a Möbius-strip[23]

around a flux tube with only one unit. So in the lan-

guage of fractional charge[24], the non-local quark is

bound to a flux tube 2φa
0 to form a “composite parti-

cle”. In the topological scenario[15] for the FQHE, we

find that the filling factor 1/(2m+1/p) fits our model

with m= 1 and p= 1, hence we obtain a filling factor

1/3 for the non-local quark.

In FQHE with filling factor 1/3, an energy band is

already full when the number of accommodated elec-

trons reaches one third of the number of total states

and any further filling to the same band is forbidden.

If we view the three states in a baryon as a degenerate

energy band, a quark with a filling factor 1/3 can in

fact fill all these three energy levels. This means that

one quark has effectively occupied three states and

any further filling by quarks with the same color is

not allowed. Nevertheless, since all the three binding

quarks share the SU(3) symmetry, the filling factor

for one defined non-local quark is simultaneously ap-

plicable to the other two quarks. As a result, every

single one of the three quarks occupies three states

(See Fig. 1). We cannot diagonalize the quarks’ states

by conventional transformation between representa-

tions. The quarks (states) appear only as an entirety

containing all three colors simultaneously, but cannot

be separated (See Fig. 2). Note that we initially as-

signed a particular color to the non-local quark, but

finally the non-local quark lost its identity. The rea-

son is that its color has been distributed over three

states, as illustrated in Fig. 2.

Fig. 1. In a three-quark color-singlet state,
each of the three quarks occupies three states
simultaneously.

Fig. 2. In a three-quark color-singlet state, the
three quarks are viewed as an entirety with
three colors that cannot be separated. The
color forment appears at arXiv: 0708.3538.

Similarly, the Hamiltonian method used in the

study of the FQHE can also be applied to quarks.

If the color of the non-local quark has been specified,

the Dirac Eq. (7) will reduce to the same form as

(i 6∂− g 6A−m)ψ(x,x0) = 0 with only two colors ap-

pearing in the wave function ψTranspose = (ψa,ψb) (a, b

denote the un-specified colors). For heavy quarks, the

approximation based on considering |p|/mquark as a

small quantity is always possible. Since in our FQHE

gauge Aµ is projected onto a plane and its scalar part

is vanishing, it can be shown by following the stan-

dard approximation procedure in QED[25] that the

large components of the wave functions ψa,ψb satisfy
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the following Schrödinger-Pauli equation,

i
∂
∂ t
ψ=−

1

2m
[σ •(∇− igA)]2ψ. (14)

Here, the wave function ψ has the same form as

ψTranspose = (ψa,ψb), but only the first two spinor

components of each color remain; σi are Pauli ma-

trices for spins; and Ax,y = Aa
x,yτ

a. Additionally,

in the FQHE the spin effect in the Hamiltonian is

suppressed[26]. In the heavy quark limit it is reason-

able to assume that both spin components satisfy the

same equation

i
∂
∂ t
ψ1,2 =Hψ1,2, H =−

1

2m
(∇− igA)2, (15)

where ψa,b = [(ψ1,ψ2)a,b]
Transpose. This Hamiltonian is

just the same as that used in the FQHE, from which

the energy gap for the ground state can be evaluated

as ∆∼
e2

lB
, where lB is the magnetic length defined by

l2B =

∣

∣

∣

∣

1

qeB

∣

∣

∣

∣

[26]. In the case of quarks, the energy gap

for the ground state is ∆∼
g2

laB
, with (laB)2 =

∣

∣

∣

∣

1

qgF a
µν

∣

∣

∣

∣

.

This means that the field induced by the di-quark de-

termines the energy gap for the three-quark-system.

3 Outlook and discussion

The analogy between the three-quark baryon

states and the FHQE studied in this work is

a natural extension to previous assumptions and

perceptions[27—29]. We expect this work to open new

windows for further investigation on nonperturba-

tive properties of quarks. Here, we have dealt with

the non-local quark and its planar motion under the

heavy-quark approximation |p|/mquark � 1. This en-

sures the credibility of the model and its relation to

QCD is comparable with quark potential models.

Our model is valid for a non-Abelian field with

symmetry group SU(3), but not for any other SU(N)

field of strong interactions. In this sense, the FQHE,

which in 2-dimensions appears as an artificially de-

signed condensed matter property, seems to be an in-

trinsic characteristics of quarks. The difference is that

the FQHE in condensed matter is a cooperation in-

volving a great number of particles whereas a hadron

contains only a few constituent quarks. We stress

that the correlation effect is a crucial point to under-

stand the tri-quark confinement. Along this way, the

implication of other fractional states of the FQHE

will be instructive in understanding quark states of

other possible types. Applying the chiral-symmetry

of 2-dimensional graphene[30] to light hadrons may

shed light on the nonperturbative properties of light

quarks.

H.J.W. is grateful to Prof. S. S. Wu and Prof.

Yu-Xin Liu for encouraging discussions.
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