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Three-body force and the tetraquark interpretation of

light scalar mesons *
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Abstract We study the possible tetraquark interpretation of light scalar meson states a0(980), f0(980), κ,

σ within the framework of the non-relativistic potential model. The wave functions of tetraquark states are

obtained in a space spanned by multiple Gaussian functions. We find that the mass spectra of the light scalar

mesons can be well accommodated in the tetraquark picture if we introduce a three-body quark interaction in

the quark model. Using the obtained multiple Gaussian wave functions, the decay constants of tetraquarks are

also calculated within the “fall apart” mechanism.
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1 Introduction

Tetraquarks were proposed decades ago. Early

in 1977, Jaffe made a calculation using the color-

magnetic interaction in the bag model[1, 2]. He sug-

gested that the light scalar mesons below 1 GeV,

a0(980), f0(980), κ and σ, be interpreted as a nonet

of light tetraquarks.

In recent years, the light scalar mesons were ob-

served in decays of charmed mesons. The σ is ob-

served as a peak in the decay D+ →π+π−π+[3, 4] and

f0(980) in D+
s →π+π−π+[5]. From the process J/ψ→

ωπ+π−, the BES collaboration determined the pole

position of σ to be M−iΓ/2 = (541±39)−i(252±42)

MeV[6]. The BES collaboration found also a κ like

structure in the decay J/ψ→ K̄∗K+π−[7]. The accu-

mulation of experimental data allows us to study the

structure of the light scalar nonet based on the decay

properties of its members[8—10].

As a many-body system, a tetraquark state is

quite different from a baryon or a conventional qq̄

meson. The color structure is no longer trivial. It

is quite sensitive to the hidden color structure of the

QCD interaction. A tetraquark state, if its existence

is confirmed, may provide us important information

about the QCD interaction that is absent from the or-

dinary baryons or the qq̄ mesons. For instance, some

authors had investigated the tetraquark system with

the three-body qqq̄ and qq̄q̄ interaction, whose exis-

tence has no direct effect on the ordinary hadronic

states[11—13]. The newly updated experimental data

can shed more light on the relation between the pos-

sible tetraquark states and the QCD interaction.

In this article, we will study the possible

tetraquark state within the framework of the non-

relativistic potential model. We will calculate mass

spectra and wave functions of the light tetraquark us-

ing the Bhaduri potential[14]. To fit the experimental

masses, we will extend the model with the three-body

qqq̄ and qq̄q̄ interaction. Using the wave functions of

tetraquarks, we will determine the coupling constants

of tetraquarks to mesons under the “fall apart” mech-

anism.

The article is organized as follows: In Sec. 2, we

introduce the model Hamiltonian and the multiple

Gaussian function method which is used to obtain the

tetraquark wave functions. In Sec. 3, we present the

“fall apart” decay calculation with tetraquark wave

function. In Sec. 4, we present the numerical results.

Finally we will give a brief summary.

2 Hamiltonian and wave functions

In a non-relativistic quark model, usually the po-

tentials are limited to the two-body interaction, which

mainly consists of two parts: the λc
•λc color inter-
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action including the confinement and the Coulomb

interaction of one-gluon exchange, and the λc
•λcσ •σ

color-magnetic interaction. The Hamiltonian reads

as

H =
∑

i

(

mi +
P 2

i

2mi

)

− 3

4

∑

i<j

[

Fi
•FjV

C(rij)+

Fi
•FjSi

•SjV
SS(rij)

]

(1)

where the mi’s are the quark masses, F c
i =

λc
i

2
, and

rij is the distance between quark i and quark j.

Among the various potential forms used in differ-

ent quark models, the Bhaduri potential[14] is rather

simple and gives a unified description of conventional

hadron spectroscopy. Also it is often used to discuss

the tetraquark system[13, 15—18]. The potentials read

as

V C
ij =− κ

rij

+
rij

a2
0

−D, V SS
ij =

4κ

mimj

1

r20rij

e−rij/r0 .

The parameters have the following values:

κ= 102.67 MeV•fm, a0 = 0.0326 (MeV−1
• fm)

1
2 ,

D= 913.5 MeV, r0 = 0.4545 fm,

mu =md = 337 MeV, ms = 600 MeV,

mc = 1870 MeV, mb = 5259 MeV. (2)

In a tetraquark, some new interactions which

have no direct effect on the ordinary hadrons may

have significant contribution. For instance, one

can introduce the following three-body qqq̄ and qq̄q̄

interactions[11—13]

Vqqq̄(ri,rj ,rk) =dabcF a
i F

b
j F

c∗
k U0×

exp[−(r2ij +r2jk +r2ki)/r
2
0 ],

Vqq̄q̄(ri,rj ,rk) =dabcF a
i F

b∗
j F c∗

k U0×
exp[−(r2ij +r2jk +r2ki)/r

2
0 ].

In this article, since we will only treat the ground

states of tetraquarks, the spatial dependence of the

three-body interaction is less important. So we will

only add the following simplified interaction into the

model Hamiltonian (1)

V3b =U0(d
abcF a

i F
b
j F

c∗
k +dabcF a

i F
b∗
j F c∗

k ). (3)

This interaction is diagonal in the diquark–anti-

diquark color base of the tetraquark

〈[qq]3̄[q̄q̄]3 |V3b | [qq]3̄[q̄q̄]3〉=−20

9
U0, (4a)

〈[qq]6[q̄q̄]6̄ |V3b | [qq]6[q̄q̄]6̄〉= +
10

9
U0. (4b)

An immediate consequence is that this three-body

interaction has no direct contribution to any meson-

meson coupling channel.

To explain our calculation method, we first de-

fine some convenient coordinates for the tetraquark

system as illustrated in Fig. 1[17],

x1 = r1−r2, (5a)

x2 = r3−r4, (5b)

x3 =
m1r1 +m2r2

m1 +m2

−m3r3 +m4r4

m3 +m4

, (5c)

y1 = r1−r3, (6a)

y2 = r2−r4, (6b)

y3 =
m1r1 +m3r3

m1 +m3

−m2r2 +m4r4

m2 +m4

, (6c)

z1 = r1−r4, (7a)

z2 = r2−r3, (7b)

z3 =
m1r1 +m4r4

m1 +m4

−m2r2 +m3r3

m2 +m3

. (7c)

Fig. 1. Three ways to define the relative coor-
dinates for a tetraquark system. Filled and
open circles represent quarks and anti-quarks
respectively.

The basis wave functions for the tetraquark will

be the product of color, spin, flavor and spatial wave

functions. The color and spin SUc(3)⊗ SUs(2) ba-

sis functions we use, is of the following diquark anti-

diquark coupling form:

1) S= 0

α1 =|3̄12334〉c⊗|012034〉s, α2 = |3̄12334〉c⊗|112134〉s,
α3 =|6126̄34〉c⊗|012034〉s, α4 = |6126̄34〉c⊗|112134〉s.

(8)

2) S= 1

α1 =|312334〉c⊗|012134〉s, α2 = |312334〉c⊗|112034〉s,
α3 =|312334〉c⊗|112134〉s, α4 = |612634〉c⊗|012134〉s,
α5 =|612634〉c⊗|112034〉s, α6 = |612634〉c⊗|112134〉s.

(9)

3) S= 2

α1 = |3̄12334〉c⊗|112134〉s, α2 = |6126̄34〉c⊗|112134〉s.
(10)

Here the color wave function of the two (anti-)quarks

is labeled by the SUc(3) dimension and the spin wave

function by the total spin.
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The anti-symmetric diquarks [ud], [us], [ds] form

the 3̄ representation of flavor SUf(3). The 3̄ di-

quarks and 3 anti-diquarks further form a tetraquark

nonet. They are assumed to be the light scalar

mesons[1, 8, 19]. So the flavor wave functions are:

a0(I = 1, I3 = 0)=
1√
2
([us][ūs̄]− [ds][d̄s̄]), (11a)

f0(I = 0)=
1√
2
([us][ūs̄]+[ds][d̄s̄]), (11b)

σ0(I = 0)= [ud][ūd̄], (11c)

κ+ = [ud][̄sd̄]. (11d)

As for the spatial wave functions, we will start

from the multi-dimensional Gaussian function

gs(x1,x2,x3) = exp

(

−
3
∑

i,j

As
ijxi ·xj

)

, (12)

where As
ij are the function parameters. The wave

function of this form is well convergent and there ex-

ists many analytical expressions for different matrix

elements. We will use it to construct the spatial basis

wave functions[20, 21].

Under the hypothesis of Jaffe, the color-spin wave

function of a “good” diquark is the symmetric one,

|3̄12〉c⊗|012〉s. As the flavor wave function of the scalar

nonet state is anti-symmetric, so the spatial wave

function should be symmetric. That is, the spatial

wave function of the tetraquark state should be in-

variant under x1 →−x1 and/or x2 →−x2. If we use

the Gaussian function (12) as the basis wave function,

it is easy to see that[17]

A12 =A23 =A31 = 0 .

We will use the following symmetric combination

as a basis function

ψs(x1,x2,x3) =
1

4
[gs(x1,x2,x3)+g

s(−x1,x2,x3)+

gs(x1,−x2,x3)+g
s(x1,x2,−x3)].

(13)

If the non-diagonal parameters Aij(i 6= j) are small,

we have

ψs(x1,x2,x3) ≈ exp[−(As
11x

2
1 +As

22x
2
2 +As

33x
2
3)]×

[

1+2As2
12(x1

•x2)
2 +2As2

13(x1
•x3)

2 +

2As2
23(x2

•x3)
2
]

. (14)

This allow us to study the correlations in the quark

alignment.

We will choose n independent symmetric Gaus-

sian functions (13), s = 1,2, ...,n, to span an n-

dimensional nonorthogonal basis. The n independent

Gaussian functions are obtained by the following pro-

cess. First, we use one such symmetric Gaussian func-

tion as a test wave function in the variation to deter-

mine a base parameter set Aij . The matrix (Aij) will

be specified by its three principal values denoted by

A(0)
11 , A(0)

22 , A(0)
33 and three Euler angels (α,β,γ) which

specify the orientation. Then a complete parameter

set As
ij(s = 1,2, ...,n) is generated by first scaling to

the principal values[17]

As(0)
ii =A(0)

ii d
si (15)

where si =−k,−k+1, ...,k−1,k, (2k+1)3 =n, and d

is a scaling factor. Then we make an Euler rotation

(α,β,γ).

By diagonalizing the Hamiltonian in the above

nonorthogonal basis, we will obtain the masses and

wave functions of tetraquark states. The wave func-

tion can be expressed in the above basis functions as

|T 〉=φf

∑

is

Cisαiψ
s, (16)

where φf is the flavor wave function and Cis are the

superposition coefficients.

Similar to the case in pseudo-scalar mesons, the

I = 0 members f0, σ0 in the scalar nonet will mix

with each other. To consider the mixing, we further

introduce a mixing angle φ[9]

f = f0 cosφ+σ0 sinφ, σ=−sinφf0 +cosφσ0 . (17)

Then f and σ are the physically observable states. In

this article, we do not discuss the underlying mech-

anism of this mixing. So we will merely treat the

mixing angle φ as one additional parameter.

3 Decay properties of tetraquark

states

Several authors have used the effective Lagrangian

with SUf(3) symmetry to discuss the decay of the

light scalar nonet[8, 9]. Here we can calculate the cou-

pling constants using the tetraquark wave functions.

The general coupling Lagrangian reads as

L=f0

[

gf0ππ

π •π

2
+gf0K̄KK̄K+ · · ·

]

+

σ0

[

+gσ0ππ

π •π

2
+gσ0K̄KK̄K+ · · ·

]

+

a •

[

ga0K̄KK̄τK+gaηsπηsπ+caηqπηqπ+ · · ·
]

+

gκK̄π

(

K̄τκ •π+h.c.
)

+ · · · (18)

At present, the quark interaction underlying the

meson decay couplings is still unclear to us. Here we

will assume that the mechanism underlying the de-

cay and the fusion process is the same and can be de-

picted by the “fall apart” mechanism in Fig. 2. More

specific, we assume that the coupling constant of a

tetraquark T to two mesons M1 and M2 is propor-

tional to the wave function overlap

gTMM ∝〈M1M2 |T〉 . (19)
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The meson wave functions will also be approximated

by multiple Gaussian wave functions determined by

a similar variation process

|M〉r =φf

∑

s

Csψ
s(r) , (20)

where φf is the meson flavor wave function, and the

spatial basis function is

ψs(r) = e−As
r
2

. (21)

A tetraquark system q1q2q̄3q̄4 can fall apart into

two different flavor combinations q1q̄3 + q2q̄4 and

q1q̄4+q2q̄3, and the corresponding final meson-meson

states are different

|M1M2〉1 = |M1〉y1
|M2〉y2

, (22)

|M1M2〉2 = |M1〉z1
|M2〉z2

. (23)

The spatial wave functions are defined in the coordi-

nates yi and zi of Eqs. (6) and (7) respectively.

Fig. 2. “fall apart” mechanism for decays of
q2q̄2 tetraquark states.

In the decay of the light scalars to pseudo-scalar

mesons, we need to consider the η-η′ mixing

η= cosθηq +sinθηs, (24a)

η′ =−sinθηq +cosθηs, (24b)

where ηq =
1√
2
(uū+dd̄), ηs = ss̄ and sinθ=−0.608[22].

We obtain the following expressions for the coupling

constants (a proportionality constant is dropped)

gf0→ηη = sinθ cosθAf0→ηq+ηs
, (25a)

gf0→ηη′ =
1√
2
(cosθ2−sinθ2)Af0→ηq+ηs

, (25b)

gf0→η′η′ =−sinθ cosθAf0→ηq+ηs
, (25c)

gf0→KK =
1√
2
Af0→K++K− . (25d)

gσ0→ππ =

√
3

2
Aσ0→π++π− , (26a)

gσ0→ηη =
1

2
cosθ2Aσ0→ηq+ηq

, (26b)

gσ0→ηη′ =− 1√
2

sinθ cosθAσ0→ηq+ηq
, (26c)

gσ0→η′η′ =
1

2
sinθ2Aσ0→ηq+ηq

. (26d)

ga→πη =
1√
2

sinθAa+
0
→π++ηs

, (27a)

ga→πη′ =
1√
2

cosθAa+
0
→π++ηs

, (27b)

ga→KK =
1√
2
Aa+

→K++K̄0 . (27c)

gκ→πK =

√
3

2
Aκ+

→π++K0 , (28a)

gκ→ηK =
1

2
cosθAκ+

→ηq
, (28b)

gκ→η′K =−1

2
sinθAκ+

→K++ηq
(28c)

Besides the explicit flavor overlap factors, AT→MM is

the overlap of the color, spin and spatial wave func-

tion.

After considering the σ-f0 mixing effect, The cou-

pling constants gT→MM for the decays of σ and f0 are

further modified to

gf→MM = cosφgf0→MM +sinφgσ0→MM, (29a)

gσ→MM =−sinφgf0→MM +cosφgσ0→MM. (29b)

4 Numerical results

The Bhaduri potential gives a unified description

of the spectroscopy of ordinary mesons and baryons.

The Hamiltonian (1) itself is an eigenvalue problem

of a differential equation which can be solved nu-

merically. However, the multiple Gaussian function

method can still give an impressively good approxi-

mation of the mesonic ground state and, in addition,

the Gaussian wave function is rather simple to use.

In Table 1, we show some results of the pseudo-scalar

meson calculation. We see that the multiple Gaussian

function method greatly improves the single Gaussian

function approximation.

Table 1. Pseudo-scalar meson calculations. Col.
1: direct solution of the Schrödinger equa-
tion, col. 2: use of the variational method
with a single Gaussian function, col. 3: use of
the multiple Gaussian function method with 7
Gaussian functions.

mπ = mηq/MeV mK/MeV mηs/MeV

136 520 758
250 582 800
137 521 758

Now we turn to the tetraquark calculation. In

our calculation, the scaling factor is fixed to be d= 2.

We will take k = 1, i.e., the wave function space is

spanned by 33 = 27 Gaussian functions. In the light

scalar tetraquark, as we assume that the flavor parts

of the diquark and anti-diquark wave functions are

antisymmetric and the spatial wave function is sym-

metric, so the color and spin wave function must be

the symmetric ones, α1 and α4 in Eq. (8).
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First, we will consider the original Bhaduri po-

tential without the three-body quark interaction (3).

We obtain the following mass values

Mσ = 687 MeV, Mκ = 1067 MeV,

Ma0
=Mf0 = 1371 MeV, (30)

which are about 300 MeV higher than the experimen-

tal values. One can calculate the probability to find a

tetraquark state |Ψ〉 in different color-spin structures

αk

Pαk
=

∫ 3
∏

i=1

dxi |〈αk|Ψ〉|2 . (31)

The color-spin contents of the tetraquark nonet with-

out three quark interaction are presented in Table 2.

In this case the color content is mainly the 6×6̄ com-

ponent which disagrees with Jaffe’s “good” diquark

hypothesis.
Table 2. Contents of tetraquarks without

three-body interaction.

σ κ a0, f0
Pα1 0.30 0.30 0.29
Pα4 0.70 0.70 0.71

Next, if the three body interaction with U0 =

0.333 GeV is turned on, we find that light tetraquark

masses are

Mσ = 443 MeV, Mκ = 744 MeV,

Ma0
=Mf0 = 985 MeV, (32)

which are in agreement with the experimental

values[23]:

Mσ = 800±400 MeV, Mκ = 840±80 MeV,

Ma0
= 984.7±1.2 MeV, Mf0 = 980±10 MeV. (33)

The color-spin contents of the nonet are shown in

Table 3 and also agree with the “good” diquark

picture[8, 24].
Table 3. Contents of tetraquarks with three-

body interaction.

σ κ a0, f0
Pα1 0.80 0.88 0.92
Pα4 0.20 0.12 0.08

In our calculation, the tetraquark wave function is

symmetric under the coordinate reflections x1 →−x1

and/or x2 →−x2. It is easy to see that the expecta-

tion values

〈xi
•xj〉= 〈x2

i 〉δij . (34)
√

〈x2
1〉 and

√

〈x2
2〉 are the mean square radii(RMS) of

the diquark and anti-diquark respectively. The quark

and anti-quark RMS of the tetraquark is given by

R2 ≡
〈

∑4

i=0
mi(ri−RCM)2

〉

∑4

i=0
mi

=

µ12〈x2
1〉+µ34〈x2

2〉+µ12,34〈x2
3〉

m1 +m2 +m3 +m4

, (35)

where

RCM =
∑4

i=0
miri

/

∑4

i=0
mi, (36)

µij =
mimj

mi +mj

, (37)

µij,kl =
(mi +mj)(mk +ml)

mi +mj +mk +ml

. (38)

The RMS values are tabulated in Table 4.

Table 4. The RMS values in fm.

σ κ a0, f0
√

〈x2
1〉 0.70 0.72 0.70

√

〈x2
2〉 0.70 0.69 0.70

√

〈x2
3〉 0.54 0.58 0.56

However, the spatial wave function (13) is be-

yond the usual tetraquark assumption. Usually a

tetraquark is assumed to be constructed from “good

diquarks”. The inner orbital angular momentum of

the (anti-)diquark in a tetraquark is zero. So the

relative angular momentum between the diquark and

anti-diquark in the scalar tetraquark is also zero. The

spatial wave function will have the form

ψ(x1,x2,x3) =ψ(x2
1,x

2
2,x

2
3), (39)

i.e., all the xi are in S-waves. Our choice (13) is be-

yond the above assumption (this can be easily seen

from Eq. (14)). If Eq. (39) holds, then the following

identity is valid:

〈(xi
•xj)

2〉=
1

3
〈x2

i 〉〈x2
j 〉, (i 6= j). (40)

The deviation of a tetraquark state from (39) can be

measured by

εij =
3〈(xi ·xj)

2〉
〈x2

i 〉〈x2
j 〉

−1. (41)

The numerical εij values are listed in Table 5. The

small nonzero ε values means that the tetraquark

states are indeed not pure S-waves. There is always

some D-wave mixing.

Table 5. The εij values of tetraquark wave function.

σ κ a0, f0
ε12 0.14 0.23 0.08
ε13 0.21 0.22 0.13
ε23 0.21 0.24 0.13

With the obtained wave functions we can calcu-

late the wave function overlap in Eqs. (25) — (28) to

get the coupling constants. The results are collected

in Table 6. According to Ref. [9], the scalar isoscalar

mixing angle φ in Eq. (17) will be fixed by the ra-

tio g2
f→K̄K/g

2
f→ππ

= 4.21 with Eq. (29). This gives

φ= 16.8◦. The ratios of coupling constants for scalar

meson decays are listed in Table 7. Similar to Bugg’s

calculation[9], although most of the experimental ra-

tios can be fitted within a factor 2, g2
f→ηη

/g2
f→ππ

is far

above the experimental value.
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Table 6. Tetraquark-meson-meson wave function overlap in color, spin, spatial space AT→M1M2 (unit GeV−3/2).

σ0 → π+ +π− κ+ → π+ +K0 κ+ →K++dd̄ a+ →K+ +K̄0 a+ → π+ +ηs
10.75 9.37 9.37 8.16 8.38

Table 7. Ratios of coupling constants for light scalar meson decays, with φ= 16.8◦.

analysis of Ref. [25] analysis of Ref. [9] our results Expt.[6, 26—28]

g2
a0→πη/g2

a0→K̄K
0.60 0.40±0.03 0.39 0.75±0.11

g2
f→K̄K

/g2
f→ππ

4.21 4.21±0.46 4.21 4.21±0.46

g2
f→K̄K

/g2
a0→K̄K

2.28 0.93±0.01 0.92 2.15±0.4

g2
a0→πη′

/g2
a0→πη 0.16 – 1.71 –

g2
f→ηη

/g2
f→ππ

1.35 1.07±0.18 1.15 < 0.33

g2
σ→K̄K

/g2
σ→ππ 4.8×10−7 0.03±0.01 0.04 0.6±0.1

g2
σ→ηη/g2

σ→ππ 0.05 0.23±0.02 0.25 0.20±0.04

g2
κ→πK/g2

σ→ππ 0.78 0.58 0.83 (2.14±0.28) to (1.35±0.10)

g2
κ→ηK/g2

κ→πK 0.12 0.20±0.01 0.21 0.06±0.02

g2
κ→η′K

/g2
κ→πK 0.006 0.13±0.01 0.12 0.29±0.29

5 Summary

In summary, we have performed a tetraquark

calculation of light scalar mesons using the quark

potential model. If we only consider the two-body

quark interaction as in the conventional hadron cal-

culation, the masses of the tetraquark states will be

several hundred MeV higher than the experimental

data. In addition the major component of the light

tetraquark wave functions consists of the color sextet

diquark and anti-diquark. After including a three-

body interaction in the Hamiltonian, the masses of

the light tetraquark nonet agree with the experimen-

tal data and their wave functions are composed of

mainly the “good” diquarks and anti-diquarks. We

have used multiple Gaussian functions to approxi-

mate the tetraquark wave functions and noticed that

there is a small mixing of D-waves in the wave func-

tions. With our wave functions, we also calculate the

coupling constants for scalar meson decays according

to the “fall apart” mechanism. By introducing the

isoscalar mixing angle φ, we obtain a fit of the ratios

of coupling constants for scalar meson decays similar

to other analysis based on the tetraquark picture.
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