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Abstract We study the properties of QCD vacuum state in this paper. The values of various local quark

vacuum condensates, quark-gluon mixed vacuum condensates, and the structure of non-local quark vacuum

condensate are predicted by the solution of Dyson-Schwinger Equations in “rainbow” approximation with

three sets of different parameters for effective gluon propagator. The light quark virtuality is also obtained in

a consistent way. Our all theoretical results here are in good agreement with the empirical values used widely

in literature and many other theoretical calculations.
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1 Introduction

Quantum mechanics dictates that even “empty”

space is not empty, but rather filled with quantum

fluctuations of all possible kinds. In many contexts,

such as in atomic physics, these vacuum fluctuations

are subtle effects which can only be observed by preci-

sion experiments. In other situations, especially when

interactions of sufficient strength are involved, the

vacuum fluctuations can be of substantial magnitude

and even “condense” into a non-vanishing vacuum ex-

pectation value of some quantum fields called vacuum

condensate. These vacuum condensates can act as a

medium[1], which influences the properties of particles

propagating through it.

An important example of such a vacuum conden-

sate is the Higgs vacuum, which is introduced in the

Standard Model of particle physics to generate the

masses of quarks, leptons, and the gauge bosons of

the weak interaction. The vacuum expectation value

of the Higgs field, 〈φ〉 = 246 GeV, is uniquely deter-

mined in the Standard Model; The quark and lepton

masses differ from one another only due to the dif-

ferent strength of the coupling of each fermion to the

Higgs field. At the same time, the quark masses also

receive additional contributions from the quark and

gluon condensates in the QCD vacuum. In fact, the

contribution of the QCD vacuum condensates to the

masses for the three light quarks (u, d, s) consider-

ably exceeds the mass believed to be generated by

the Higgs field[2]. Therefore, an accurate determina-

tion of vacuum condensates is extremely important

for studying the quark mass which is the fundamen-

tal QCD input parameter of the Standard Model and

will give an insight on the flavor physics, revealing

the relations between masses and mixed angles, or

specific textures of the quark matrix, and provide

an indicator if the CP is violating because of quark

mass is closely related to the CP - violating observable

ε
′/ε — an adjudgement of CP violation[3].

The non-vanishing value of chiral quark vacuum

condensates signals the spontaneous breaking of chi-

ral symmetry in QCD, and quantitatively is related to

the pseudo-Goldstone bosons mass spectrum[4]. Due

to the non-perturbative effect of QCD, the vacuum

of QCD has a nontrivial structure. There are non-

zero fluctuations of gluon and quark fields in QCD

vacuum which manifests itself in the presence of vac-

uum condensates. The vacuum condensates are very

important in the elucidation of the QCD structure
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and in the description of hadron properties. If the

vacuum acts as a medium and influences the proper-

ties of fundamental particles and their interactions,

its properties can conceivably change. This idea has

important implications in many aspects of physics.

This is another importance to study QCD vacuum.

The properties of non-perturbative QCD vacuum

state also determine the quark propagator. The non-

perturbative vacuum of QCD is densely populated by

long-wave fluctuations of quark and gluon fields. The

order parameters of this complicated state are char-

acterized by the vacuum matrix elements of various

singlet combinations of quark and gluon fields, such

as

〈0 |: q̄q :| 0〉, 〈0 |: Ga
µνGa

µν :| 0〉,

〈0 |: q̄[σµνGa
µν

λa

2
]q :| 0〉, · · · , (1)

which are called vacuum condensates of QCD, where

q(x) is the quark field, Ga
µν represents the gluon field

strength tensor with a being color index (a = 1, 2, · · · ,
8), and can be expressed as

Ga
µν(x) = ∂µ Aa

ν(x)−∂ν Aa
µ(x)+gsf

abcAb
µ(x)Ac

ν(x). (2)

λa in Eq. (1) is the Gell-Mann matrix, fabc represents

the SUc(3) structure constants, gs is the coupling con-

stant related to the so-called QCD running coupling

constant αs by αs(Q) =
g2
s (Q)

4π

. Aa
µ is gluon field.

As discussed above, in QCD by condensates we

mean the vacuum mean values 〈0 |Oi | 0〉 of the local

operators Oi(x), which arise due to non-perurbative

effects. The latter point is very important and needs

clarification. When determining vacuum condensates

one implies the averaging only over non-perturbative

fluctuations. If for some operators Oi the non-zero

vacuum mean value appears also in the perturbative

theory, it should not be taken into account in deter-

mination of the condensate. In other words, when de-

termining condensates the perturbative vacuum mean

values should be subtracted in calculation of the vac-

uum averages.

Separation of perturbative and non-perturbative

contribution into vacuum mean values has some ar-

bitrariness. Usually, this arbitrariness is avoided

by introducing some normalization point µ2 (µ2 ∼
1 GeV2). Integration over momenta of virtual quarks

and gluons in the region below µ2 is referred to con-

densates, the above µ2 is referred to perturbative the-

ory. In such a formulation condensates depend on the

normalization point µ: 〈0 | Oi | 0〉 = 〈0 | Oi | 0〉µ. In

perturbation theory, there appear corrections to con-

densates as series in the coupling constant αs(µ):

〈0 |Oi | 0〉Q = 〈0 |Oi | 0〉µ

∞
∑

n=0

Ci
n(Q,µ)αn

s (µ). (3)

The running coupling constant αs at the right-hand

part of Eq. (3) is normalized at the point µ. The

left-hand part of Eq. (3) represents the value of the

condensate normalized at the point Q. Coefficients

Ci
n(Q,µ) may have logarithms ln(Q2/µ2) in powers

up to n for Ci
n. Summing up of the terms with high-

est powers of logarithms leads to the appearance of

the so-called anomalous dimension of operators, so

that in general form it can be written

〈0 |Oi | 0〉Q = 〈0 |Oi | 0〉µ

[

αs(µ)

αs(Q)

]γi ∞
∑

n=0

ci
n(Q,µ)αn

s (µ),

(4)

where γi are the anomalous dimensions (numbers),

and ci
n have already no leading logarithms. If there

exist several operators of the given (canonical) dimen-

sion, then their mixing is possible in the perturbation

theory. Then the relations Eq. (3) and (4) become

matrix.

The nonzero local quark vacuum condensate 〈0 |:
q̄(0)q(0) :| 0〉 is responsible surely for the spontaneous

breakdown of chiral symmetry. The nonzero local

gluon vacuum condensate 〈0 |: Ga
µνGa

µν :| 0〉 defines

the mass scale of hadrons through trace anomaly[5].

For example, the nucleon mass MN depends on the

trace of gluon field strength tensor TrG2 partly, since

MN = 〈N | −9αs

4π

TrG2 +muūu+mdd̄d+mss̄s |N〉[5].

The non-local vacuum condensates 〈0 |: q̄(x)q(0) :|
0〉 describes the distribution of quarks in the non-

perturbative vacuum[6]. Physically, this means that

the vacuum quarks and gluons have a nonzero mean-

square momentum called virtuality. Indeed, the

quark and gluon average virtualities are connected

with the vacuum expectation values[7]. The average

virtuality of quarks, λ2
q, is related, by the equation of

motion in the chiral limit, to the mixed quark-gluon

local vacuum condensate[8]

2λ2
q =

〈0 |: q̄igsσµνGa
µν

λa

2
q :| 0〉

〈0 |: q̄q :| 0〉 . (5)

Therefore, if one wants to study the quark virtuality

λ2
q in vacuum one has to calculate the quark-gluon

mixed vacuum condensates and quark vacuum con-

densate.

Since non-perturbative QCD is insoluble, we have

to search for a method to solve this difficulty. One of

the acceptable approaches is the QCD sum rule. In

the QCD sum rules, we deal with a correlator func-

tion which is given by the two-point function

Πµν(q) = i

∫
∞

0

dxeiqx〈0 |T [χ(x)χ̄(0)] | 0〉, (6)

where χ(x) is called interpolator. if we consider

hadron, as example, the interpolating field χ is typi-
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cally constructed from quark field operators combined

to give the quantum number of hadron under investi-

gation. At the quark level, one exploits the operator

product expansion (OPE)[9] to describe the short dis-

tance behavior of the two-point function

T [χ(x), χ̄(0)] =
∑

n

Cn(x,µ)On(0,µ) =

C0(x)I +C1(x)mq +C3(x)q̄q+C4.1(x)Ga
µνGaµν +

C4.2(x)mqq̄q+C5.1(x)q̄σµν

λa

2
qGaµν +

C5.2(x)mqG
a
µνGaµν +C6.1(x)q̄Γqq̄Γq+

C6.2(x)mqq̄σµν

λa

2
qGaµν +C6.3(x)fabcGa

µνGb
νλGc

λµ+

C7.1(x)q̄qGa
µνGaµν +C7.2(x)mqq̄Γqq̄Γq+

C7.3(x)mqf
abcGaµνGbνλGcλµ+

C8.1(x)q̄Γqq̄σµν

λa

2
qGaµν +C8.2(x)mqq̄qGa

µνGaµν+

C8.3(x)Ga
µνGaµνGbρλ + · · · , (7)

where µ is the normalization point at which the coef-

ficient functions and the operators are defined. Here

we have explicitly included all operators up to di-

mension eight, to leading order in the quark mass

mq, having the quantum number of the vacuum. The

first digit of the subscript of the Wilson coefficients

C(x) denotes the energy dimension of the opera-

tor. Γ may take any of the 16 independent Dirac-

γ matrices. Thus, to carry out the QCD sum rule

calculations one has to have various vacuum con-

densates of Eq. (7), for instance 〈0 | q̄q | 0〉, 〈0 |
Ga

µνGaµν | 0〉, 〈0 | q̄σµν
λa

2
qGaµν | 0〉, 〈0 | q̄Γqq̄Γq | 0〉,

〈0 |Ga
µνGb

νλGc
λµ | 0〉, 〈0 |Ga

µνGaµνGb
ρλGbρλ | 0〉, and so

on. This once again shows that the study of QCD

vacuum condensates is an important task.

Condensates in QCD are divided into two types:

conserving chirality, such as gluonic condensate

〈0 | αs

π

Ga
µνGaµν | 0〉, since the term of Ga

µνGaµν in

QCD Lagrangian is invariant with respect to chiral

transformation, and violating chirality, for example

〈0 | q̄q | 0〉, which is related to quark mass and is of

chiral variation. In neglecting quark masses m̂f , the

QCD Lagrangian

L=
∑

f

q̄a
f (iγµDµ−m̂f )qa

f −
1

4
Ga

µνGaµν , (8)

with Dµ = ∂µ−igs

λa

2
Aa

µ is chiral invariant: the left-

hand and the right-hand (in chirality) quarks do not

interact with each other, both the vector and the

axial currents are conserved (except for flavor sin-

glet axial current, non-conservation of which is due

to anomaly). In the case of violating chirality, the

most important condensates is the quark condensate

〈0 | q̄q | 0〉 which can be written in the form

〈0 | q̄q | 0〉= 〈0 | q̄LqR +q̄RqL, | 0〉, (9)

where qL, qR are the fields of the left-hand and the

right-hand (in chirality) quark. Therefore, as follows

from Eq. (9), the non-zero value of quark condensate

means the transition of the left-hand quark fields into

the right-hand quark fields and it is not small would

mean the chiral symmetry violation in QCD.

The present paper is organized as the following:

In Sect. 2, we briefly introduce the fully dressed quark

propagator defined by Dyson-Schwinger Equations

(DSEs), and its rainbow approximation form. We

solve the DSEs and get their solutions, Af and Bf ,

by using a modeling gluon propagator. Since the so-

lutions are related to various QCD vacuum conden-

sates, we set up the relation of various vacuum con-

densates with function Af and Bf in Sect. 3 through

the operator product expansion of quark propagator.

Sect. 4 is devoted to the numerical calculations of var-

ious QCD vacuum condensates described by Af and

Bf according to the operator product expansion in

Sect. 3. We reserve our summary and conclusion for

Sect. 5.

2 Fully dressed quark propagator

2.1 Dyson-Schwinger form of quark propaga-

tor

We start from the fully dressed quark propa-

gator, Sf (p), which is defined by Dyson-Schwinger

equations[10]

iS−1
f (p) =i(S0

f (p))−1 +Cfg2
s

∫
d4k

(2π)4
×

γµSf (k)Γ ν(k,p)Gµν(p−k), (10)

with S0
f being bare quark propagator, i(S0

f (p))−1 =

6 p−mf . The factor Cf = 4/3 stands for the color factor

and gs is the strongly coupling constant of QCD which

is related to the so-called running coupling constant

αs(Q
2) by the equation of αs = g2

s /4π. The subscript

f stands for quark flavors u, d and s. The Γ ν(k,p) is

Bethe-Salpeter (BS) amplitude[11] describing the fully

dressed quark-gluon coupling vertex. This renormal-

ized vertex is obtained from the vertex DSEs

Γ ν(k,p) = Zγν +

Nc
∑

b=1

∫
d4q

(2π)4
Sb

f(k+p)×

Γ ν
b (k+p,p+q)Sb

f (p+q)Kb(k,p,q), (11)

where Z is a renormalization constant and Kb(k,p,q)

is the kernel related to the fully dressed gluon propa-
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gator. Gauge invariance requires that the transverse

part of the BS amplitude obey the Ward - Takahashi

Identity (WTI)[12]

(k−p)µiΓ ν(k,p) = S−1
f (k)−S−1

f (p) , (12)

which is an extension to non-vanishing momen-

tum transfer of the Ward identity[12], Γ ν(k,p) =
∂

∂pµ

Σ(p) with Σ(p) being the quark self-energy func-

tion formulated[13] by

Σ(p) = ig2
s

∫
d4q

(2π)4
γµ λa

2
Sf (q)Γ ν

b (q,p)Gab
µν(p−q). (13)

The Gµν(p− q) in Eqs. (10,13) denotes an effective

gluon propagator, which is known in the perturba-

tive QCD region but has to be modeled in the non-

perturbative region since it is unknown in this region.

The general form of Gµν(q) can be written as the fol-

lowing

Gµν(q) =
1

q2

[(

δµν −
qµqν

q2

)

1

1−Π
+ξ

qµqν

q2

]

, (14)

with ξ being a gauge parameter (ξ = 0 is for the Lan-

dau gauge and ξ = 1 the Feynman gauge). δµν =

diag(1,1,1,1) is the Euclidean metric. The Π(q) is

defined by

Πµν(q) = i

(

δµν −
qµqν

q2

)

q2Π(q) =

−g2
s

∫
d4xeiqx〈0 |T [Jµ(x)Jν(0)] | 0〉pp, (15)

where the subscript “pp” represents the proper part

of vacuum matrix elements of the time ordering op-

erator product. That is, only one-vector-meson irre-

ducible graphs contribute to Πµν(q).

2.2 Rainbow approximation of DSEs, Γ ν =γν

As it is impossible to solve the complete set of

DSEs, Eq. (10), one has to truncate this infinite tower

of integral equation in a physically acceptable way to

reduce them to something that is soluble. To this

end, we make a further simplification by replacing the

fully dressed quark-gluon vertex Γ ν(k,p) in Eq. (11)

with its bare one, γν . This is the so-called “rainbow”

approximation. Under this approximation, the DSEs

comes out to be

iS−1
f (p) = i(S0

f (p))−1 +
4

3
g2
s

∫
d4k

(2π)4
×

γµSf (k)γν(k,p)Gµν(p−k). (16)

Eq. (16) is our basic equation to study the fully

dressed quark propagator and QCD vacuum conden-

sates. However, it should be pointed out that the

price to pay for this approximation is the loss of gauge

covariance of the DSEs. However, it has been proved

that it is a good approximation and used widely in

literature.

2.3 Modeling gluon propagator G(p−q)

Since the fully dressed gluon propagator Gµν(q) in

Eq. (16) is completely unknown at non-perturbative

region, we must use a modeling gluon propagator to

solve the DSEs. The Feynman-like gauge (ξ = 1) used

here leads to the choice of the following empirical form

of the Gµν(q)

Gab
µν(q) = δabδµνG(q) , (17)

for the model gluon propagator with Greek letters

representing Lorentz indices and Latin letters stand-

ing for color indices. Using the results of Ref. [14] for

the propagator G(q) leads to

g2
s G(s) =

4πα(s)

s
, (18)

where α(s) is formulated phenomenally in terms of

parameters χ and ∆ as the following[14]:

α(s) = 3πs
χ2

4∆2
e−s/∆ +

πd

ln(s/Λ2 +ε)
, (19)

which determines the quark-quark interaction

through a strength χ and a range parameter ∆.

The first term in Eq. (19), simulates the infrared

enhancement and confinement, and the second term

matches the leading log re-normalization group re-

sults. The QCD scale parameter Λ = 0.20 GeV, and

d = 12/(33−2Nf) = 12/27 for flavor number Nf = 3.

The ε in the second term of Eq. (19) can be varied in

the range of 1.0—2.50. However, we take ε to be 2.0

from Ref. [14] in this work. The parameters ∆ and χ

are given by Ref. [14] as shown in Table 1.

Table 1. The values of the strength parameter
χ and range parameters ∆ of the quark-quark
interaction used in our present calculations.

set no. of range strength
parameters parameter ∆ parameter χ

set 1 0.40 1.84
set 2 0.20 1.65
set 3 0.02 1.50

2.4 Solutions of DSEs, self-energy functions

Af and Bf

An important observation is that the general form

of the inverse quark propagator S−1
f (p) can be rewrit-

ten in Euclidean space[14] as

S−1
f (p) = i/p •Af (p2)+Bf (p2) (20)

in a covariant gauge with /p = γµpµ. The propaga-

tor is renormalized at space - like point µ2
p according

to Af (µ2
p) = 1 and Bf(µ2

p) = mf (µ2
p) with mf(µ2

p)

being the current quark mass whose value is about
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mu,d = 5.1 MeV for u, d quarks. and ms = 127.5 MeV

for s quark.

Except for the current quark mass and perturba-

tive corrections, the functions Af (p2) and Bf (p2) are

non-perturbative quantities, and satisfy the new set

of DSEs in the Feynman gauge[15]

[Af (p2)−1]p2 =
8

3

∫
d4q

(2π)4
G(p−q)×

Af (q2)

q2A2
f (q2)+B2

f (q2)
p •q, (21)

Bf (p2) =
16

3

∫
d4q

(2π)4
G(p−q)

Af (q2)

q2A2
f (q2)+B2

f (q2)
. (22)

For practical calculations, we can go a further step to

write the DSEs, Eqs. (21, 22), as the following

[Af (s)−1]s =
1

3π
3

∫
∞

0

s′ds′

∫
π

0

sin2 φg2
s G(s,s′)×

√
ss′Af (s′)cosφ

s′A2
f (s′)+B2

f (s′)
dφ , (23)

Bf (s) =
2

3π
3

∫
∞

0

s′ds′

∫
π

0

sin2 φg2
s G(s,s′)×

Bf(s′)

s′A2
f (s′)+B2

f (s′)
dφ , (24)

where s = p2, g2
s G(s,s′) = g2

s G(s + s′ − 2
√

ss′ cosφ).

Therefore, using the modeling gluon propagator G(p−
q) in Eq. (18) with α(s) in Eq. (19), we can solve these

two coupled integral equations, Eqs. (23, 24), and ob-

tain the self-energy functions Af and Bf which will

be used in the rest parts of this paper to calculate

various vacuum condensates of QCD and to predict

the structure of the non-local quark vacuum conden-

sates, quark virtuality in the vacuum state, λ2
q, as well

as to study the p2-dependence of vector self energy

functions [1−Af(p2)] and scalar self energy function

Bf (p2)−mf . Using the functions Af and Bf the self

energy Σf can be written as

Σf (p) = /p[Af(p)−1]+Bf (p)−mf . (25)

Evidently, while p2 approaches ∞ the Σ goes to zero

and consequently quarks are free, asymptotic free-

dom.

3 Relation between vacuum conden-

sates and solutions of DSEs, Af and

Bf

In order to set up a closed relation between the

various vacuum condensates of QCD and the solu-

tions of DSEs Af and Bf [see Eqs. (25, 26)], we study

the quark propagator in coordinate space and its op-

erator product expansion (OPE) at short Euclidean

distance[9]. The OPE is a powerful technique that

systematically includes non-perturbative corrections

and parameterizes the non-trivial properties of the

QCD vacuum in terms of condensates. We extract

vacuum condensates by evaluating the quark propa-

gator at short distance via DSEs, and comparing the

result with the OPE prediction.

3.1 Operator product expansion of quark

propagator

The quark propagator Sf(p) is closely re-

lated to the 2-point Green function G2(x1,x2) =

〈0 |T [q̄(x2)q(x1)] | 0〉 since it represents a propagation

of the quark from x1 to x2 (or vice versa). Accord-

ingly, the quark propagator in space-time is defined

as the correlator function

Sab
µν(x) = 〈0 |T [qa

µ(x)q̄b
ν(0)] | 0〉 , (26)

where T stands for the time-ordering operator.

T [q(x)q̄(0)] can be easily calculated by use of the

Wick theorem[16]. Since the propagator is diagonal

in color, the propagator can be written as S(x) = 〈0 |
T [qa(x)q̄a(0)] | 0〉, with no sum on the color index a.

For the physical vacuum the quark propagator Sf (x)

has a perturbative part represented by SPT
f (x) and

a non-perturbative part denoted by SNPT
f (x). In the

case of vanishing current quark masses (mf = 0) one

can write

Sf (x) = SPT
f (x)+SNPT

f (x) . (27)

The perturbative part, SPT
f (x), is given in the con-

figuration space by the Fourier transformation of the

free quark propagator S0
f (p) = i/(/p−mf) in the mo-

mentum space

SPT
f (x) =

i

2π
2x4

γxδab− mf

22
π

2x2
δab + · · · . (28)

The trouble is in the non-perturbative part SNPT
f (x).

One approach to the treatment of the non-

perturbative aspects of QCD correlator is to use the

operator product expansion (OPE)[6], which implies

a continuation to large momenta. The operator prod-

uct expansion of the non-perturbative sector of quark

propagator is given[17] by

SNPT
f (x) = − 1

12

{

〈0 |: q̄(x)q(0) :| 0〉+

γµ〈0 |: q̄(x)γµq(0) :| 0〉
}

. (29)

It should be stressed that normal-ordered products,

and therefore SNPT
f , do not vanish in the non-

perturbative vacuum. Evidently, if one wants to

study the non-perturbative part of the quark prop-

agator, one has to investigate both the scalar part

〈0 | q̄(x)q(0) | 0〉 and the vector part 〈0 | q̄(x)γµq(x) | 0〉
of Eq. (29). However, for our present purposes here
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only considering the scalar part of Eq. (29) is suffi-

ciently enough. For short distance, the OPE for the

scalar part of SNPT
f (x), 〈0 |: q̄(x)q(0) :| 0〉, gives

〈0 |: q̄(x)q(0) :| 0〉= 〈0 |: q̄(0)q(0) :| 0〉−
x2

4
〈0 |: q̄(0)igsσG(0)q(0) :| 0〉+ · · · , (30)

where 〈0 |: q̄q :| 0〉 is the quark vacuum condensate and

〈0 |: q̄(0)igsσ • G(0)q(0) :| 0〉 is the quark-gluon mixed

vacuum condensate. Here the local operators of the

expansion in Eq. (30) are the quark field, the mixture

of quark field and gluon field, and so forth. They are

various singlet combinations of the quark and gluon

field operator.

3.2 Relation between vacuum condensate

and functions Af and Bf

As we said, the vacuum condensates are the vac-

uum expectation values of local operators, and they

are gauge invariant constants. These condensates can

be used to constrain the DSEs solutions by the follow-

ing relationships in Euclidean space and in “rainbow”

approximation[17]

〈0 |: q̄(x)q(0) :| 0〉 = − 12

16π
2

∫
∞

0

ds •s
Bf(s)

sA2
f (s)+B2

f (s)
×

[

2
J1(

√
sx2)√

sx2

]

, (31)

with the notation that s = p2, the Euclidean squared

momentum. Therefore, the local (x = 0) quark vac-

uum condensate 〈0 |: q̄(0)q(0) :| 0〉 can be expressed by

self-energy functions Af (s) and Bf (s), the solutions

of DSEs, as

〈0 |: q̄(0)q(0) :| 0〉=− 3

4π
2

∫
∞

0

ds •s
Bf(s)

sA2
f (s)+B2

f (s)
.

(32)

In a 1/NC expansion of the gluon two point

function[15], the quark-gluon mixed vacuum conden-

sate 〈0 |: q̄(0)igsσG(0)q(0) :| 0〉 is derived and can be

expressed[13, 15, 17] by

〈0 |: q̄(0)igsσG(0)q(0) :| 0〉=

− 9

4π
2

∫
∞

0

ds •s

[

s
Bf(s)[2−Af (s)]

sA2
f (s)+B2

f (s)
+

81 •Bf(s)
{

2sAf (s)[Af (s)−1]+B2
f (s)

}

16[sA2
f(s)+B2

f (s)]

]

. (33)

The non-local four quark vacuum condensates are re-

lated to the self-energy functions Af and Bf by the

relationship[13—15]

〈0 |: q̄(x)γµ

λa

2
q(x)q̄(0)γµ

λa

2
q(0) :| 0〉µ =

−
∫

d4p

(2π)4

∫
d4q

(2π)4
eix(p−q)×

[

43 Bf (p2)

p2A2
f (p2)+B2

f (p2)

Bf (q2)

q2A2
f (q2)+B2

f (q2)
+

2×42 1

p2A2
f (p2)+B2

f (p2)

1

q2A2
f (q2)+B2

f (q2)
p •q

]

.

(34)

Consequently, the local (x = 0) four quark vacuum

condensates come out from Eq. (34) to be

〈0 |: q̄(0)γµ

λa

2
q(0)q̄(0)γµ

λa

2
q(0) :| 0〉µ =

−43

[∫
d4q

(2π)4
Bf(q2)

q2A2
f (q2)+B2

f (q2)

]2

. (35)

which has been estimated by factorization approxima-

tion. We shall compare their results in the following

section.

4 Numerical calculations of various

vacuum condensates and results

Using the solutions of DSEs, Eqs. (23,24), with

three different sets of quark-quark interaction param-

eter for effective gluon propagators as given in Ta-

ble 1, Af and Bf , leads to our following theoretical

predictions for the structure of non-local quark vac-

uum condensate, p2-dependence of self-energy func-

tions, various local quark vacuum condensates, and

local quark-gluon mixed vacuum condensates as well

as quark virtuality in QCD vacuum state. These re-

sults are shown in following subsections respectively.

4.1 Violating chirality vacuum condensates

Carrying out the integration over s in Eq. (31),

we obtain x — dependence of 〈0 |: q̄(x)q(0) :| 0〉 —

the structure of non-local quark vacuum condensate

Fig. 1. Structure of non-local vacuum conden-
sates of the light quarks: u, d, and s.
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Table 2. The local quark vacuum condensates of QCD, 〈0 |: q̄q :| 0〉 and their ratios.

parameters 〈0 |: q̄q :| 0〉u,d
µ2=1 GeV2

〈0 |: q̄q :| 0〉s
µ2=1 GeV2

〈0 |: q̄q :| 0〉u,d

µ2=1 GeV2

〈0 |: q̄q :| 0〉s
µ2=1 GeV2

set No. 1 −(196 MeV)3 −(209 MeV)3 0.812
set No. 2 −(191 MeV)3 −(205 MeV)3 0.808
set No. 3 −(179 MeV)3 −(193 MeV)3 0.797

which describe the distribution of quarks in the non-

peturbative vacuum state. The results are plotted

in Fig. 1 for u, d and s quarks. As is seen, when

x = 0 Eq. (31) becomes Eq. (32) and the integration

of Eq. (32) over s produces values of the local quark

vacuum condensates for three different sets of param-

eters. The results are shown in Table 2.

These results are consistent with the predictions

by Gall-Mann- Oakes - Renner relation[18] (GMOR),

(mu +md)〈0 | q̄q | 0〉 = −1

2
m2

π
f 2

π
, where mu and md

are quark masses with value of mu +md = 9.7 MeV,

and mπ = 140 MeV, fπ = 93 MeV are mass and de-

cay constant of pion, respectively. Substituting these

values into the GMOR relation produces 〈0 | q̄q | 0〉=

−0.0087 GeV3.

From our calculations the ratio of u, d quark vac-

uum condensate to strange quarks (s) vacuum con-

densate 〈0 | ūu | 0〉/〈0 | s̄s | 0〉≈ 0.8.

The next in dimension d = 5 condensate, which

violates chiral symmetry, is the quark gluon mixed

vacuum condensate. The values for the local quark-

gluon mixed vacuum condensates are calculated from

Eq. (33) and they are given in Table 3.

Table 3. The mixed quark-gluon local vacuum
condensates of QCD, 〈0 |: q̄igsσGq :| 0〉.

para-

meters
〈0 |: q̄igsσGq :| 0〉u,d

µ2=1GeV2
〈0 |: q̄igsσGq :| 0〉s

µ2=1GeV2

set No. 1 −(718 MeV)5 −(761 MeV)5

set No. 2 −(719 MeV)5 −(762 MeV)5

set No. 3 −(719 MeV)5 −(759 MeV)5

Our theoretical results are consistent with the em-

pirical values used widely in QCD sum rules[19] and

also with the predictions of Lattice calculations[20].

As we mentioned before, the vacuum matrix el-

ements of four fermion operators can be expressed

by the square of 〈0 |: q̄q :| 0〉, using Fierz transfor-

mations[21] saturating by the vacuum intermediate

state and neglecting the contributions of all other

states. For example, four quark condensates in vac-

uum are estimated by the factorization approxima-

tion via

〈0 |: ūΓ1uūΓ2u :| 0〉=
1

16
〈0 |: ūu |: 0〉2×

[Tr(Γ1)Tr(Γ2)−
1

3
Tr(Γ1Γ2)],

(36)

and

〈0 |: ūΓ1λ
auūΓ2λ

au :| 0〉=−1

9
〈0 |: ūu :| 0〉2Tr(Γ1Γ2),

(37)

and so on, where Γ1 and Γ2 are Dirac matrices, and

“Tr” denotes a trace over the Dirac indices. Under

the factorization approximation, the four quark vac-

uum condensates come out as being

〈0 |: q̄σµν

λa

2
qq̄σµν

λa

2
q :| 0〉=−4

3
〈0 |: q̄q :| 0〉2, (38)

〈0 |: q̄γµ

λa

2
qq̄γµ

λa

2
q :| 0〉=−4

9
〈0 |: q̄q :| 0〉2, (39)

〈0 |: q̄γ5

λa

2
qq̄γ5

λa

2
q :| 0〉=−1

9
〈0 |: q̄q :| 0〉2. (40)

Our theoretical predictions from Eqs. (38—40) for

the dimension d = 6 condensates, four quark local vac-

uum condensates built from quark fields, are shown

in Tables 4—6.

Table 4. Four quark local vacuum condensates of QCD, 〈0 |: q̄γµ
λa

c

2
qq̄γµ

λa
c

2
q :| 0〉.

parameters 〈0 |: q̄γµ
λa

c

2
qq̄γµ

λa
c

2
q :| 0〉u,d

µ2=1 GeV2
〈0 |: q̄γµ

λa
c

2
qq̄γµ

λa
c

2
q :| 0〉s

µ2=1 GeV2

set No. 1 −2.519×10−5 GeV6 −3.704×10−5 GeV6

set No. 2 −2.158×10−5 GeV6 −3.299×10−5 GeV6

set No. 3 −2.462×10−5 GeV6 −2.297×10−5 GeV6

Table 5. Four quark local vacuum condensates of QCD, 〈0 |: q̄σµν
λa

c

2
qq̄σµν

λa
c

2
q :| 0〉.

parameters 〈0 |: q̄σµν
λa

c

2
qq̄σµν

λa
c

2
q :| 0〉u,d

µ2=1 GeV2
〈0 |: q̄σµν

λa
c

2
qq̄σµν

λa
c

2
q :| 0〉s

µ2=1 GeV2

set No. 1 −7.560×10−5 GeV6 −11.110×10−5 GeV6

set No. 2 −6.473×10−5 GeV6 −9.896×10−5 GeV6

set No. 3 −4.386×10−5 GeV6 −6.891×10−5 GeV6
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Table 6. Four quark local vacuum condensates of QCD, 〈0 |: q̄γ5
λa

c

2
qq̄γ5

λa
c

2
q :| 0〉.

parameters 〈0 |: q̄γ5
λa

c

2
qq̄γ5

λa
c

2
q :| 0〉u,d

µ2=1 GeV2
〈0 |: q̄γ5

λa
c

2
qq̄γ5

λa
c

2
q :| 0〉s

µ2=1 GeV2

set No. 1 −6.299×10−6 GeV6 −9.261×10−6 GeV6

set No. 2 −5.395×10−6 GeV6 −8.247×10−6 GeV6

set No. 3 −3.655×10−6 GeV6 −5.743×10−6 GeV6

The variation of self-energy functions with s2 is

given in Fig. 2 where the top panel is for scalar func-

tion [Bf −mf ] and low one is for vector self-energy

[1−Af ]. As is seen, while p2 approaches to ∞ both

functions, [Bf −mf ] and [1−Af ], approach to zero.

Fig. 2. s2- dependence of self-energy functions
[1 − Af (s2)] and Bf (s2) − mf : (a) for u, d
quarks; (b) for s quark.

4.2 Quark virtuality in the QCD vacuum

state

According to Eq. (5), our theoretical predictions

from Eqs. (32,33) for quark virtuality, the nonzero

mean square momentum of quarks in QCD vacuum

state, is

λ2
u,d =

1

2

〈0 |: q̄(0)

[

igsσµνGa
µν

λa

2

]

q(0) :| 0〉u,d

〈0 |: q̄(0)q(0) :| 0〉u,d

=

0.70 GeV2 (41)

for u, d quark, which is in the acceptable range[22]

of λ2
q between 0.4—1.0 GeV2. The standard QCD

sum rule estimation[23] gives λ2
u,d = 0.4± 0.1 GeV2,

the QCD sum rule analysis of pion form factor[24]

produces λ2
u,d = 0.70 GeV2 and lattice QCD

calculations[25] λ2
u,d = 0.55 GeV2. For s quark, we

have

λ2
s =

1

2

〈0 |: q̄(0)[igsσµνGa
µν

λa

2
]q(0) :| 0〉s

〈0 |: q̄(0)q(0) :| 0〉s
= 1.60 GeV2

(42)

which is consistent with the predictions of lattice

QCD[25], λ2
s = 2.50 GeV2, and the instanton model

prediction[26], λ2
s = 1.40 GeV2.

5 Summary and concluding remarks

We study QCD vacuum in this paper. The values

of various local quark vacuum condensates, quark-

gluon mixed vacuum condensates, and structure of

non-local quark vacuum condensate are predicted by

the solution of Dyson-Schwinger Equations in “rain-

bow” approximation with three sets of parameters for

the effective gluon propagator α(s). The light quark

virtuality is also obtained in the same way. All theo-

retical results are in a good agreement with empirical

values used widely in literature, and other theoretical

approximations.

The QCD vacuum is densely populated by long-

wave fluctuations of quark and gluon fields. The or-

der parameters of this complicated vacuum state are

characterized by a variety of local vacuum conden-

sates which are vacuum matrix elements of various

singlet combinations of quark and gluon fields. The

existence of QCD vacuum condensates reflects in a di-

rect way the non-perturbative structure of the QCD

vacuum. Studying the non-perturbative structure of

QCD vacuum is of decisive importance for strong in-

teraction physics. For instance, in addition to the

quark mass originated from coupling to Higgs, the

QCD vacuum condensates also make large contribu-

tions to light quark masses. An accurate determina-

tion of quark masses can give a deep insight on the

physics of flavor, revealing relations between masses

and mixing angles, or specific textures in the quark

mass matrix, which may originate from still uncov-

ered flavor symmetries.

The QCD vacuum acts as a medium and influ-

ences the properties of fundamental particles and

their interactions, its properties can conceivably

change. The nonzero local quark vacuum conden-

sate is responsible for the spontaneous breakdown of
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Chiral symmetry. The nonzero local gluon vacuum

condensate defines the mass scale of hadrons through

trace anomaly. The non-local vacuum condensates

describe the distribution of quarks in the non - per-

turbative QCD vacuum state. Physically, this means

that vacuum quark and gluons have a nonzero mean-

square momentum called virtuality.

All our predictions on vacuum condensates and

quark virtuality are in good agreement with those

used widely in literature and other theoretical pre-

dictions such as QCD sum rules and lattice QCD cal-

culations.
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