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Abelian-Higgs phase of SU(2) QCD and

glueball energy *
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Abstract It is shown that SU(2) QCD admits an dual Abelian-Higgs phase, with a Higgs vacuum of a

type-II superconductor. This is done by using a connection decomposition for the gluon field and the random-

direction approximation. Using a bag picture with soft wall, we presented a calculational procedure for the

glueball energy based on the recent proof for wall-vortices [Nucl. Phys. B 741(2006)1].
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1 Introduction

Recently, the multi-vortices, of the Abrikosov-

Nielsen-Olesen type, were found to be wall vortices

for the Abelian-Higgs (AH) model[1]. Such a multi-

vortex is a bag object with a wall tension TW and a

thickness that separates an internal region with en-

ergy density ∆ε and an external region with energy

density 0. This provides a novel mechanism for bag

objects formation in a field-theoretical framework.

In our previous work[2], an dual AH model has

been derived from Yang-Mills (YM) theory and the

dual superconductor vacuum was then investigated.

In this paper, we show that the SU(2) QCD admits

an dual Abelian-Higgs phase, with a type-II super-

conductor Higgs vacuum. This is done by applying a

connection decomposition[3—5] to the gluon field and

the random-phase approximation for the field in the

QCD vacuum state. Based on the bag picture of

hadrons that bag is built by wall-vortices, a calcula-

tional procedure for the glueball energy is presented

for the SU(2) QCD.

Our study is also inspired by the natural emer-

gence of the partial “electric-magnetic” duality as

well as a gauge-invariant scalar kernel Z(φ) both

in the reformulated YM theory[5, 6] and in the ef-

fective confining model of QCD suggested by ’t

Hooft[7]. In the latter, Z(φ) assumes the role of

the vacuum medium factor, quite similar to the

dia-chromoelectric constant in the dia-chromoelectric

soliton (DCS) model[8, 9]. Now that the bag object

can arise in the AH model as a many-vortex soliton,

namely, wall vortices[1], it is interesting to investigate

the QCD origin of the dual AH model, the dual and

relativistic version of the Ginzburg-Landau theory for

superconductors.

2 The duality in SU(2) QCD and
hadronic picture

We begin with the SU(2) YM theory, reformu-

lated by a reparameterization called connection de-

composition (CD)[3—5]. The gluon field Aµ (the ar-

row denotes the three color indices a = 1,2,3, along

the generators τa) is decomposed into[3, 4]
Aµ =

Aµn̂ + g−1 ∂µ n̂× n̂+bµ, in which bµ can be further

decomposed into bµ = g−1[φ1 ∂µ n̂ + φ2 ∂µ n̂× n̂][5] if

one considers only the transverse degrees of freedom.

Here, Aµ is an Abelian potential and n̂ is an unit

iso-vector. As a result, one has the Faddeev-Niemi

decomposition[5]

Aµ = Aµn̂+Cµ +g−1φ1 ∂µ n̂+g−1φ2 ∂µ n̂× n̂ (1)
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with Cµ := g−1 ∂µ n̂ × n̂ the non-Abelian magnetic

potential. Here, Eq. (1) has been written in such a

form that φ is dimensionless. The Abelian magnetic

field Hµν/g = n̂ · (∂µ n̂× ∂ν n̂)/g can be defined via

explicitly calculating the non-Abelian magnetic field

tensor Cµν = −g−1Hµνn̂ corresponding to Cµ. We

note that the covariance of bµ under the gauge rota-

tion U(αn̂) = exp(iαnaτa) (na is the a-component of

n̂) yields the transformation φ → φe−iα for the com-

plex field φ := φ1+iφ2, showing that it forms a charged

scalar field. This idea of CD is closely associated with

the Abelian projection[10], and can be generalized to

the spinorial-decomposition case[11, 12].

With (1), the YM Lagrangian becomes[6]

LYM = −1

4

[

Fµν −
Z(φ)

g
Hµν

]2

−

1

4g2

{

(nµν − iHµν)(∇µφ)†∇νφ+h.c
}

, (2)

where Fµν := ∂µ Av − ∂v Aµ, Z(φ) := 1 − |φ|2 and

nµν := ηµν(∂ n̂)2 − ∂µ n̂ · ∂ν n̂. ∇µφ := (∂µ−igAµ)φ is

the U(1) covariant derivative induced by the gauge

rotation U(αn̂). We note that for Aµ = 0 the theory

becomes

LM = − (Z(φ))2

4g2
H2

µν −

1

4g2

{

(nµν − iHµν)(∂µ
φ)† ∂ν

φ+h.c
}

, (3)

in which the media-like factor Z(φ) resembles the dia-

electric factor in the DCS model[8, 9] and the gauge-

invariant kernel in the effective model[7], both of

which account for the QCD vacuum effects: Z(φ →
0) = 1 in the perturbative (normal) vacuum (say, in-

side hadrons) and Z(φ→φ0) 6= 1 in the nonperturba-

tive (NP) vacuum (say, outside hadrons).

The topological variable n̂(x), which defines the

homotopy π2(V ) of the relevant region V , plays the

role of the singular transformation from the global ba-

sis {τ 1—3} to the local basis {n̂,∂µ n̂,∂µ n̂× n̂}. This

suggests that the QCD vacuum can be topologically

different with the perturbative vacuum due to the

nontrivial homotopic class of the map n̂. The vali-

dity of the local basis in the region V depends upon

the regularity of ∂µ n̂ in V which is violated at iso-

lated singularities zi. Note that in the slowly-varying

limit of n̂ (that is, the norm ||∂µ n̂|| is negligible on

the average), the decomposition (1) ceases to make

sense due to the degeneracy of {n̂,∂µ n̂,∂µ n̂×n̂}, and

in this case one can instead use the commonly-used

expression Aaτa.

In the DCS model[8, 9] for hadrons, the theory ad-

mits two vacua: one is the perturbative vacuum with

the scalar σ = 0 inside the soliton and the other is the

NP vacuum σ = σ0 outside the soliton. The soliton

is the field-theoretical counterpart of the bag in the

bag model[8, 9]. Comparing this with the idea of two

vacua, it is very suggestive to investigate the small-g

limit of the dynamics (2) by assuming 〈||∂ n̂||〉 ∼O(g)

and ∂φ ∼ o(g) as g → 0. This yields 〈||Hµν ||〉/g → 0

〈||nµν−iHµν ||〉/g2 → const. The theory then becomes

an Abelian electrodynamics

LE =−1

4
F 2

µν . (4)

Let us consider a bag-like picture of a glueball or

a hadron with the two vacua separated by the bag

boundary region. We assume the existence of a fixed

point of the Gell-Man-Low beta function and g → gs

monotonously while changing the position x from the

bag center x = 0 to |x|= +∞ (see Ref. [13]). The two

limits g → 0 (the infrared limit) and g → gs ∼ 1 (the

ultraviolet limit) correspond to the perturbative vac-

uum inside the bag (or soliton) and the NP vacuum

outside, respectively. The dual structure of QCD in

these two limits implies that asymptotically one can

view the model (4) as the chromo-electric dynamics

for the inside of the bag while (3) as the chromo-

magnetic dynamics for the outside.

To reconcile the bag picture with the dual su-

perconductor mechanism of the confinement[14] one

needs to set the average norm 〈||∂ n̂||〉= 〈(∂ n̂)2〉1/2 →
0 as g → 0 and the magnetic field fluctuatations

〈(Hµν)2〉1/2 ∝ 〈(∂ n̂)2〉 → H (a constant), increas-

ingly as |x| → +∞ since ||∂ n̂|| measures the den-

sity of monopoles which should tend to vanish inside

the bag (g ≈ 0). This implies the following: as |x|
goes from 0 to +∞, the monopoles density will in-

creases, say, from ρ = 0 to ρ0, since the region where

singularities in the magnetic field Cµν = −g−1Hµν n̂

ocuur increases in number as n̂(x) is varying appre-

ciably. This agrees qualitatively with the Abelian

projection[10] where the QCD vacuum is in the con-

densed monopoles system, with the normal vacuum

filled with the chromo-electric flux Fµν .

3 Multi-monopoles in the magnetic
vacuum

We consider here the qualitative behavior of the

monopole density ρm(x). As is known, the magnetic

charge density is given by[3]

ρch(x) =
1

4π
εijkεabc ∂i n

a ∂j nb ∂i n
c =

∑

i

w(zi)

g
δ3(x−zi) (5)

where w(zi) stands for the winding number of the

map n̂(x) at the singularity (monopole) zi. The total
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magnetic charge Gm =

∫
Vout

ρch(x)dx in Vout is then

given by

Gm =
∑

zi∈Vout

w(zi)

g
. (6)

We note here that Gm is a topological invariant under

the map deformation of n̂(x).

Let ε be the scale of the core radius of monopoles,

over which ∂n varies. It follows from (5) that

ρch(x) ≈ (1/g)w(zi)/ε3. Let w(zi) = w be equal for

all monopoles; the monopole density is then

ρm(x) =
ρch(x)

(2π/g)
≈ w(x)

2πε3
. (7)

Since the vacuum outside is colorless one must

have Gm = 0, which implies that monopoles do occur

only as monopole-anti-monopole pairs. The length

scale Λ−1
QCD of QCD can be introduced by the QCD

cutoff ΛQCD. In the case ΛQCD=0.5 GeV, this scale is

about 0.4 fm. If ε ≈ 0.4 fm is chosen, the monopole

density depends then mainly on w(x), the winding

numbers of n̂(x) at the local sites x of monopoles.

We now examine these multi-monopoles using the

Skyrme-Faddeev(SF) model[5]as a magnetic dynam-

ics. The SF model reads

LSF =
µ2

F

2
(∂µ n̂)2− α

4
(∂µ n̂×∂ν n̂)2, (8)

The static energy is

ESF =

∫
dx

[

µ2
F

2
(∇n̂)2 +

α

4
(∂i n̂×∂j n̂)2

]

. (9)

For simplicity, the n̂-configuration is chosen to be

(n1,n2,n3) = (coswϕsinwθ, sinwϕsinwθ, coswθ),

which has an integer winding number w. Direct cal-

culation shows that

(∇n̂)2 ∝ w2 . (10)

Owing to the topological reasons this proportionality

holds also for an alternative w-winding map n̂′, a map

continuously deformed from the above n̂.

Using the virial theorem and (10), one finds that

the classical energy (9) is given by

ESF =

∫
dxµ2

F(∇n̂)2 ∝ w2 . (11)

We see that the local energy (11) of a monopole with

w-winding (i.e., magnetic charge 2πw/g) is larger

than that of w monopoles with unit winding (w = 1).

Therefore, if the NP vacuum of QCD is highly non-

trivial in the sense that n̂(x) accommodates singular-

ities with nonzero winding densely distributed in it,

such a vacuum can be a stable system of monopoles

with unit winding (w = 1), in contrast to a system

with monopolies of higher winding (|w|> 1).

For a bag with soft boundary, its boundary can be

taken to be a transition region Vao between two vacua.

Due to its complexity, we try to give a rather quali-

tative picture for Vao from the point of view of dual

superconductors. Let us suppose that the variation

of the monopole density ρm(x) ∝ w(x) according (7)

happens mainly over Vao. As |x| decreases, the num-

ber of topological singularities decreases to zero over

this region, which agrees with the analysis in section

2 (as |x| goes from inside of the bag to the outside,

the monopole density increases from 0 to a nonzero

value ρ0). This is comparable with the core structure

of the Abrikosov vortex in type-II superconductors

where the density of Cooper pairs rises from zero to

a uniform value as one goes from the core center to

the outside of the vortex. In the region outside of

the bag, the dominant variable is given by n̂ and the

related energy is given by the classical energy (9).

4 Abelian-Higgs phase and its model

To obtain a calculational procedure within the

dual superconductor mechanism, we need an effec-

tive model for the transition region Vao. As discussed

in section 2, φ(x) in (2) can play the role of a soliton

field interpolating in between the two vacua: φ(x) = 0

and φ(x) = v(6= 0). It is then very useful to take

the monopole density ρm(x) to be proportional to the

square of the norm of φ(x) in the (2): ρm(x)∝ |φ(x)|2.
In the language of field theory, this implies to choose

φ(x) as the monopole field, similar to the wavefunc-

tion of Cooper pairs in a superconductor. Writing

φ(x) = Φ(x) + δφ, where Φ(x) is the monopole con-

densate and δφ its fluctuation, one has

〈φ(x)φ†(y)〉≈Φ(x)Φ∗(y), for x0 > y0 . (12)

In the bag picture of hadrons with a soft bound-

ary region Vao, there are three regions with different

scales : VB := {x|x is inside the bag, but not in Vao},
Vao and Vout := {x|x is outside the bag and Vao}, in

the increasing order of length scale.

As discussed in section 2, VB and Vout can be taken

to be in the phase of the perturbative QCD phase

and the NP condensate phase, respectively. The rel-

evant variables are the ultraviolet gluon fields Aa
µ

(a = 1,2,3) for the former and the infrared variable

n̂ for the latter. Here, we take (Aµ, φ) as the rele-

vant variables for the region Vao, and derive the cor-

responding effective model from (2) by treating n̂ as a

background field. As will be seen in the following, the

effective model for this region is the AH model, and

we call the phase for describing Vao the Abelian-Higgs

phase.

Let us write

∂µ n̂(x) = Meµ(x) (13)
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with M = ||∂µ n̂(x)||. Clearly, M → 0 for x → 0

and M → M0 for x →∞. For simplicity, we assume

M ≈ const < M0 in Vao. Then one can find (∂µ n̂)2 =

M 2{(e0)
2 −

∑

i
(ei)

2} = −2M 2, Hµν = M 2hµν where

hµν = n̂·(eµ×eν) = sinθµν , with θµν the angle between

eµ and eν in the iso-space. We have also

∂µ n̂ • ∂ν n̂ = M 2 cosθµν ,

nµν = ηµν(∂ n̂)2−∂µ n̂ • ∂ν n̂ =

−M 2(2ηµν −cosθµν) .

(Hµν)2 = M 4h2
µν =

M 4

2

∑

µν

(1−cos2θµν).

For the magnetic field fluctuatation H :=

〈(Hµν)2〉1/2 one has

H2 =
M 4

2

{

∑

µν

〈1−cos2θµν〉
}

≈ 6M 2

where
∑

µν
1 = 12. Here, we have used the random

phase approximation (RPA)
∑

µν

〈cos2θµν〉≈ 0 .

Then, one has M 2 = H/
√

6 and the reformulated YM

Lagrangian (2) becomes

LYM = −1

4
F 2

µν +
M 2Z(φ)

4g
F µνhµν −

M 4Z(φ)2

4g2
h2

µν +
M 2

2g2

{

[2ηµν +cosθµν +

isinθµν ](∇µφ)†∇νφ+h.c
}

.

In the RPA, one has 〈hµν〉 ≈ 0,
〈

h2
µν

〉

≈ 6,

〈eiθµν (∇µφ)†∇νφ〉 ≈ 0, which leads to the following

averaged Lagrangian

LAH =−1

4
F 2

µν +
2H√
6g2

(∇µφ)†∇νφ− H2

4g2
〈Z(φ)2〉 (14)

where the equation 〈(∇µφ)†∇µφ〉= (∇µΦ(x))
∗∇µΦ(x),

which follows from Eq. (12), has been used.

Using the Wick’s theorem and the Bose symmetry

of the scalar field, one finds
〈

(φ†φ)2
〉

=
〈

φ†φ
〉〈

φ†φ
〉

+
〈

φ†φ†
〉

〈φφ〉+
〈

φ†φ
〉〈

φ†φ
〉

= 2
〈

φ†φ
〉2

〈(Z(φ))2〉 =
〈

1+(φ†φ)2−2φ†φ
〉

≈
1+2|Φ∗Φ|2−2Φ∗Φ =

2(|Φ|2−1/2)2 +1/4 .

Using the above relations and rescaling Φ so that it

gets the dimension of mass
√

3

2

m

g
Φ(x)→Φ(x) , (15)

we arrive at the following dual AH model with an

added constant

Leff =−1

4
F 2

µν + |(∂µ−igAµ)Φ|2−V (Φ)− H2

8g2
. (16)

where the replacement (15) was used. The potential

V (Φ) is given by

V (Φ) =
λ2

4
(|Φ|2−v2)2 , (17)

where

λ =
√

3g ,

v =

√
H

4
√

6g
.

(18)

It has the Mexico-hat form, implying two vacua Φ = 0

and Φ = v. As mentioned before, Φ is assumed to be

the monopole condensate, up to a constant. So, the

two vacua correspond to the perturbative vacuum and

NP vacuum, as expected in section 3. The static en-

ergy associated with the dual AH model (16) is then

given by

EAH =

∫
Vao

dx

{

1

2
B

2 + |DiΦ|2 +V (Φ)+
H2

8g2

}

. (19)

5 Glueball energy

The model (16) is nothing but the dual AH model

suggested as the effective model of the dual supercon-

ductor picture[15] for the confining phase of QCD. It is

known that this model admits the Nielsen-Olesen vor-

tex solution[16], and the dual Meissner effect is mea-

sured by two scales: the coherent length ξ = 1/mΦ

and the penetrating length λL = 1/mA. For the stud-

ies of the AH model as a long-distance gluodynamics

in the lattice framework, see Ref. [17].

The masses mΦ for the Higgs field Φ and mA for

the chromo-electric field Aµ can be determined by the

potential parameter λ and v in (18). They are

mΦ = λv =

√
3H
4
√

6
,

mA =
√

2gv =

√
2H
4
√

6
.

(20)

With (20), one finds that the Ginzburg-Landau pa-

rameter for the NP vacuum medium as

κ =
mΦ

mA

=

√
3√
2
, (type− II). (21)

The result (21) predicts a type-II superconductor vac-

uum. The Nielsen-Olesen vortex solution indicates

that Φ increases from zero near the vortex core and

approaches a nonzero constant v far away from the

vortex core.
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Given that the stable gluon flux is confined in the

bag, one expects that the energy of the gluon field

within the bag stabilizes the normal vacuum Φ = 0 by

compensating a chromo-electric energy term whose

density is
H2

8g2
= V (0)−V (v) . (22)

Here, the bag is taken to be the wall limit of confined

multi-vortices[1].

In the cylindrically symmetric case the field

strength in Vao is written as B =∇×A(r), where A(r)

denotes the nonvanishing component of A along the

longitudinal direction θ̂, and the gluon field in VB as

(B,B,B) for simplicity. The gluon energy in VB is

given by EA = (3B2/2)VB. Collecting the energies in

all regions one has

E =
3B2

2
VB +EAH+ESF . (23)

Here, ESF in (23) is taken to be the energy in Vout.

Owing to the requirement of continuity and the ap-

proximated uniformity of the condensate in Vout, the

energy density u0 in the SF model equals approxi-

mately the dual AH energy density at the boundary

of Vao and Vout: u0 ≈H2/(8g2). One gets then

E =
3B2

2
VB +

B2

2
Vao +

∫
Vao+Vout

dx
H2

8g2
+

∫
Vao

dx{|DiΦ|2 +V (Φ)}. (24)

Let R be the size of the bag, C the bag equa-

tor with the section A(C). Being a vortex formed in

normal vacuum (Φ = 0), the chromo-electric flux pass-

ing through A(C) is quantized by the monopole con-

densate field Φ = ρexp(iNθ) with N -multiply quan-

tized vortices ΦA(C) = 2Nπ/g. N is the quantum

number of the vortex within the bag. Notice that

ΦA(C) ≈ BπR2 and thereby B = 2N/(gR2). Adding

the energy [V (0)− v(Φ0)]VB+ao, which is due to the

vacuum energy density difference (22), and discarding

the infinite constant contribution from the integration

over Vao +Vout, we obtain the glueball energy

E =
2N 2

g2R4
[2VB +VB+ao]+

H2

8g2
VB+ao +

∫
Vao

dx{|DiΦ|2 +V (Φ)}=

8πN 2

3g2R

[

1+2

(

1− λL

R

)3
]

+
πH2

6g2
R3 +

∫
Vao

dx{|DiΦ|2 +V (Φ)}, (25)

where we have chosen VB+ao := VB + Vao =
4

3
πR3,

VB = 4π(R − λL)3/3 and Vao = 4π[R3 − (R −

λL)3]/3. Here, the bag boundary thickness was cho-

sen to be λL, which equals approximately 1/mA =
4
√

6/
√

2H . The bag wall tension can be taken as

TW := (1/Vao)

∫
Vao

dx{|DiΦ|2 + V (Φ)}. We see that

the first two terms have the form of the MIT-bag en-

ergy in the thin-wall limit λL/R→ 0. Minimization of

the energy (25) fixes R as a function of (N,g, H). Re-

calling that m2
Φ ∝H ∝〈(∇n̂)2〉 (see the Eq. (20)), one

sees that the dual AH model (16) and (25) provides a

calculational procedure for the glueball energy, with

two parameters H and N . Here, g can be chosen as

gs = (4παs)
1/2.

We note here that our framework for comput-

ing the glueball energy is comparable to that of

the holographic dual model[18, 19] of QCD based on

the AdS/QCD correspondence[20]. This can be seen

from the following arguments. (1) In modeling the

glueballs both employ the “string/field” correspon-

dence or “duality” . In our model it is the “electric-

magnetic” duality, which has a gravitational analogy

to a black hole in color space[2]. The holographic

model is based on the supergravity duality of QCD[21].

(2) Both models introduce a finite cutoff to truncate

the regime where conformal field modes (the massless

gluon field modes for the former and the string modes

for the latter) can propagate. (3) In the “hard-wall”

or “thin-wall” limit both models provide an analogue

to the MIT bag model. The bag is described by a

step function, given by the scalar condensate Φ in

our framework, and by a metric factor in the holo-

graphic model. In spite of these similarities, one can

see that our model differs from the holographic model

(e.g., the AdS slice dual model[18]) in that the field

modes, confined inside the bag in our model, are the

flux tubes of the gluon field in the form of multi-

vortices, while the counterparts in the holographic

model are the lightest string modes in a higher di-

mensional string theory[19]. Therefore, the duality in

our model is actually that between field and vortices

which end on the bag boundary, and can be viewed

as the prototype of the string/field duality in string

theory within the framework of field theory.

Explicit calculation of the glueball mass depends

on the solution of the dual AH model (16) which is to

be used to calculate the last integration concerning

the bag wall tension TW in (25). The magnetic con-

densation H can be given by the one-loop effective

potential calculation[22]
√

H = Λexp

(

− 6π
2

11g2
s

+
1

2

)

,

where Λ is the QCD cutoff (≈ 0.3∼ 0.5 GeV). The fur-

ther calculations and the comparison with the lattice

prediction M0++ = 1.61±0.15 GeV[23] as well as the

holographic prediction 1.3 GeV (for Λ = 0.26 GeV)

for the mass of the glueball 0++ will be presented in
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a forthcoming paper.

6 Summary

The dual structure of the SU(2) YM theory is

revisited associated with the bag picture of hadrons

and using the reparametrization, called connection

decomposition. It is shown that the theory admits

an Abelian-Higgs phase, which is effectively described

by a dual Abelian-Higgs model, with a Higgs vacuum

constant added. This phase corresponds to the soft

boundary region of the bag which is the transition

region between the normal vacuum and NP vacuum

of QCD. Applying a bag picture for the glueball, we

presented a calculational procedure for the glueball

energy, based on the idea of wall-vortices.

The author is grateful to C-R Ji for his hospitality
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University. Thanks goes also to C. Liu, P. Wang for

many helpful discussions.
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