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Bipartite entanglement in spin-1/2 Heisenberg model *
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Abstract The bipartite entanglement of the two- and three-spin Heisenberg model was investigated by using

the concept of negativity. It is found that for the ground-state entanglement of the two-spin model, the

negativity always decreases as B increases if ∆ < γ−1, and it may keep a steady value of 0.5 in the region of

B < J [(∆+1)2−γ2]1/2 if ∆ >γ−1, while for that of the three-spin model, the negativity exhibits square wave

structures if γ=0 or ∆=0. For thermal states, there are two areas showing entanglement, namely, the main

region and the sub-region. The main region exists only when ∆ >∆c (∆c = γ−1 and (γ2−1)/2 for the 2- and

3-spin model respectively) and extends in terms of B and T as ∆ increases, while the sub-region survives only

when γ 6=0 and shrinks in terms of B and T as ∆ increases.
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1 Introduction

Entanglement is an essential ingredient in the

broad field of quantum mechanics, representing the

nonlocal correlation between quantum systems that

does not exist classically. Interest in entanglement

in recent years mainly originates from its potential

applications in the topical areas of quantum com-

munication (QC) and quantum information process-

ing (QIP)[1—3], such as quantum cryptography[1],

teleportation[2], superdense coding[4] and quantum

computation[5]. Naturally, as a promising resource for

the implementation of entanglement, various types

of quantum spin chains were introduced and ana-

lyzed extensively in the context of quantum informa-

tion science[6—30], in particular their use as quantum

wires[31—33] and as simple quantum processors[34].

The Heisenberg spin system, which may be a suit-

able candidate to simulate the relation between qubits

in a quantum computer[35], is a simple but realistic

and extensively studied solid-state system. The com-

putational results of the preceding work show that

the amount of the pairwise entanglement between two

spins can be modified by varying the strength of the

temperature or the external magnetic fields. In this

paper, we study the properties of bipartite entangle-

ment in the spin-1/2 Heisenberg model by applying

the concept of negativity. We will consider only the

two- and three-spin model, and concentrate on the

dependence of entanglement on various parameters

such as the external magnetic field, the anisotropic

parameter as well as the temperature.

2 Formalism

In this section, we briefly recapitulate the defini-

tion of the negativity for a state ρ, which was firstly

introduced by Vidal and Werner[36] and is defined as

N (ρ) =
‖ρT2‖1−1

2
, (1)

where the trace norm of ρT2 is equal to the sum

of the absolute values of the eigenvalues of ρT2 ,

and T2 denotes the partial transpose of ρ with re-

spect to the second subsystem. The state ρ at

thermal equilibrium is represented by the Gibb’s

density operator ρ(T ) = Z−1 exp(−Ĥ/kBT ), where

Z=tr[exp(−Ĥ/kBT )] is the partition function, kB is

the Boltzmann’s constant and is set to be 1 hereafter.

From the obvious fact that the partial transpose

does not change the trace of a state ρ and tr(ρ)=1, it

is direct to check that the negativity is equivalent to

the absolute value of the sum of the negative eigen-

values of ρT2 , i.e.

N (ρ) =
∑

i

|µi|, (2)
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where µi is the negative eigenvalue of ρT2 .

The negativity has been shown to be an entangle-

ment monotone, which can be computed efficiently.

And obviously, it is a measure of the degree of vio-

lation of the Peres-Horodecki criterion in entangled

states. Although this criterion is only a necessary

separability condition, sufficient just for the case of

two spin-halves and the case of (1/2,1) mixed spins,

it fulfills some fundamental properties of an entan-

glement measure and bounds to the channel capacity

and the distillable entanglement in quantum informa-

tion processing.

In the special case that the state is pure ρ = |ϕ〉〈ϕ|,
with |ϕ〉= a|00〉+b|01〉+c|10〉+d|11〉, the above for-

mula for the negativity can be simplified to

N (ρ) = |ad−bc| . (3)

3 Results and discussion

We consider the spin-1/2 Heisenberg XYZ model

governed by the Hamiltonian

Ĥ = J
L

∑

i=1

[

(1+γ)Sx
i Sx

i+1 +

(1−γ)Sy
i Sy

i+1 +∆Sz
i Sz

i+1

]

+B

L
∑

i=1

Sz
i , (4)

where Sα (α = x, y, z) denotes the spin-1/2 operator,

J(1+γ) and J(1−γ) are the coupling in the x and y

directions and J∆ is that in the z direction, γ and

∆ are the anisotropic parameters with γ ∈ [−1,1] and

∆ is an arbitrary number. We constrict ourselves in

this paper to the case of γ ∈ [0,1] and B > 0 since

changing the signs of γ and B has no intrinsic effect

on the model.

3.1 The two-spin model

For the case of the two-spin model, if the periodic

boundary condition (PBC) is imposed, then by apply-

ing the exact diagonalization method, the eigenvalues

of the system are analytically obtained as

E1,2 =−1

2
J∆±J, E3,4 =

1

2
J∆±η, (5)

with the corresponding eigenstates

|φ〉
1,2

=
1√
2

(|01〉±|10〉) ,

|φ〉
3,4

=
1

√

2η(η±B)
[(B±η) |00〉+Jγ |11〉] ,

(6)

where η=(B2 +J2γ2)1/2.

We first consider the ground-state entanglement,

namely, the entanglement at zero absolute tempera-

tures. From Eq. (5) it is direct to check that when

η=0 (B=0, γ=0), the ground-state energy is E2 if

∆ >−1, while it is E3,4 if ∆ <−1 and E2,3,4 if ∆ =−1.

This gives the results N1-2=0.5 (∆ >−1) and N1-2=0

(∆ 6−1), respectively. When η 6=0, the ground-state

energy is easily found to be






























E2 = −1

2
J∆−J (if ∆ > η/J−1)

E2,4 = −1

2
η− 1

2
J (if ∆ = η/J−1)

E4 =
1

2
J∆−η (if ∆ < η/J−1)

. (7)

Thus for ∆ > η/J−1 the ground state is |φ〉2 and

for ∆ < η/J − 1, the ground state is |φ〉4, they are

both pure states. However, for ∆ = η/J − 1, |φ〉2
and |φ〉4 have the same energies, equal to the low-

est energy of the system. In this case, we assume

that the corresponding state is an equal mixture of

|φ〉2 and |φ〉4, which can be shown properly by tak-

ing the zero-temperature limit of the thermal state

ρ(T ) = Z−1 exp(−Ĥ/kBT ). So based on the above

consideration and according to the formalisms men-

tioned in Section 2, the negativity is obtained as

N1-2 =



















0.5 (if ∆ > η/J−1)
√

2−γ2/(∆+1)2−1

4
(if ∆ = η/J−1)

Jγ/2η (if ∆ < η/J−1)

.

(8)

Clearly, if ∆ < γ − 1, the negativity N1-2 always

decreases with the increase of B, irrespective of γ.

However, if ∆ > γ − 1, there exists a critical mag-

netic field Bc = J [(∆+1)2 −γ2]1/2 at which N1-2 be-

comes a nonanalytic function of B. The negativity

N1-2 now initially keeps a steady value of 0.5 when B

increases from B=0 to the neighborhood of B < Bc,

then when B = Bc, N1-2 falls to a lower value of

(
√

2−γ2/(∆+1)2−1)/4, which is due to the energy

level crossing at this point. When B > Bc, N1-2 de-

cays off gradually as B increases. From Eq. (8) it

is also easy to prove that when the anisotropy γ >

γc= (∆+1)/5, there occurs a revival of the bipartite

Fig. 1. The ground-state negativity N1-2 ver-
sus B for various anisotropic parameters γ

and ∆.
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entanglement for magnetic field B a little larger than

Bc, as N1-2 in this case becomes larger than its value

at B = Bc (see Fig. 1). Moreover, it is also worthy to

note that the critical value γc is different from that

for the pairwise entanglement measure C, which is

given by (∆+1)/3.

Let’s now turn to the more realistic case of

nonzero temperatures, i.e., the entanglement of ther-

mal states. In the standard basis {|00〉, |01〉, |10〉,
|11〉}, the partial transpose ρT2 can be written as

ρT2 =
1

Z









u1 m

w n

n w

m u2









, (9)

where

u1,2 = e−J∆/2T [cosh(η/T )∓ B

η
sinh(η/T )],

w = eJ∆/2T cosh(J/T ),

m = −eJ∆/2T sinh(J/T ),

n = −Jγ

η
e−J∆/2T sinh(η/T ),

Z = 2[eJ∆/2T cosh(J/T )+e−J∆/2T cosh(η/T )].

(10)

Then using the exact diagonalization method, the

eigenvalues of ρT2 are obtained as

λ1,2 =
w±n

Z
,

λ3,4 =
u1 +u2±

√

(u1−u2)2 +4m2

2Z
.

(11)

From Eq. (10) it is easy to check that λ2 and λ3

are always positive, thus ρT2 has negative eigenvalues

iff w < −n or u1u2 < m2, which yields the following

analytical expression of the negativity

N1-2 = max(0,−λ1)+max(0,−λ4). (12)

In Fig. 2 we show the negativities as functions of

B and T for various anisotropic parameters γ and

∆, where J is chosen to be 1. When γ=0, Eq. (12)

simplifies to N1-2=max(0, −λ4) and the condition

u1u2 < m2 becomes sinh (J/T ) >e−J∆/T . Clearly, the

critical temperature Tc below which the entanglement

exists is independent of the magnetic field B and only

determined by the anisotropy ∆ (cf. Fig. 2(a) and

(b)), Tc increases as ∆ increases. For the special case

of ∆=0 and ∆=1, Tc can be obtained analytically

as Tc1 = J/ln(1+
√

2) and Tc2=2J/ln3, respectively.

From Fig. 2(a) and (b), it is also easy to see that the

magnetic fields always suppress the bipartite entan-

Fig. 2. The negativity N1-2 versus B and T for various anisotropic parameters γ and ∆.
(a) γ=0, ∆=0; (b) γ=0, ∆=0.4; (c) γ=0.6, ∆=0; (d) γ=0.6, ∆=0.4.

glement when γ=0, and for higher values of B, the

spins will be aligned, so there is no bipartite entangle-

ment. When B > J(∆+1), increasing temperature T

may help to enhance the negativities. This behaviour

is due to the fact that in region of B > J(∆+1), the

ground state at T=0 is the untangled state |11〉, and

increasing T may bring the entangled states such as

|φ〉1 and |φ〉2 into mixing with the ground state, thus

the entanglement is enhanced.

When γ 6=0, from Fig. 2(c) and (d) we notice

that the region of nonzero negativity displays two

distinct parts, which we define them the main region

and the sub-region for the convenience of represen-

tation. The behaviors of N1-2 in the main regions
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are very similar to those of the γ=0 cases, while in

the sub-regions, the thermal fluctuations always sup-

press the bipartite entanglement, and there exists a

ridge of the negativity with the increase of B. When

∆ increases after ∆+1> γ, the main region is ex-

tended in terms of B and T , while the sub-region

shrinks. When ∆+16 γ, the main region disappears

and only the sub-region remains. From the curve just

detaching the nonzero and zero negativities on the

B-T plane of Fig. 2(c) and (d), we also note that

the critical temperature Tc here does not behave as a

monotonic function of B and attains its minimum at

about B = J [(∆+1)2−γ2]1/2.

3.2 The three-spin model

For the three-spin model under periodic boundary

condition, the eigenvalues are given by

E1,2 =
1

4
J∆+

1

2
J +

1

2
B± 1

2
η+,

E3,4 =
1

4
J∆+

1

2
J − 1

2
B± 1

2
η−,

E5,6 = −1

4
J∆− 1

2
J +

1

2
B,

E7,8 = −1

4
J∆− 1

2
J− 1

2
B,

(13)

with the corresponding states explicitly expressed as

|ϕ〉
1,2

=
1

√

2η+[η+±(J∆−J +2B)]
×

[

(J∆−J +2B±η+) |111〉+Jγ
2

∑

n=0

T n |010〉
]

,

|ϕ〉
3,4

=
1

√

2η−[η−±(J∆−J−2B)]
×

[

(J∆−J −2B±η−) |000〉+Jγ
2

∑

n=0

T n |110〉
]

,

|ϕ〉
5,6

=
±3−

√
3

6
|110〉+

√
3

3
|101〉+ ∓3−

√
3

6
|011〉 ,

|ϕ〉7,8 =
±3−

√
3

6
|010〉+

√
3

3
|100〉+ ∓3−

√
3

6
|001〉 ,

(14)

where η± = [(J∆−J±2B)2+3J2γ2]1/2, and T is the

unitary cyclic right shift operator defined by its ac-

tion on the basic T |m1m2m3 >= |m3m1m2 >. Due

to the complexity of the parameters involved, it turns

out to be extremely tedious to give an analytical ex-

pression of the negativity for the three-spin model

.So here we consider the ground-state entanglement

of two special cases of γ=0 and ∆=0, respectively.

When γ=0, the model degenerates into the XXZ

model, and there is no bipartite entanglement if ∆ 6

−1/2. If ∆ > −1/2, the negativity can be obtained

as

N1-23 =



























1/6 (if B = 0)
√

2/6 (if 0 < B < Bc1)

(
√

17−3)/18 (if B = Bc1)

0 (if B > Bc1)

, (15)

where Bc1 = J/2+J∆, and the subscript 1-23 denotes

the bipartition. Clearly, over the region between the

two points B=0 and B = Bc1, the negativity displays

a square wave structure, and out of this region, the

bipartite entanglement disappears because the spins

now are aligned parallel by the external magnetic

fields.

When ∆=0, the model is the XY model, and from

Eqs. (2), (13) and (14), it is easy to obtain that if

γ=1 and B=0, there is no bipartite entanglement.

For other cases, the negativity is given by

N1-23 =















1/6 (if B = 0,γ 6= 1)
√

2/6 (if 0 < B < Bc2)
√

2+2g2/(3+g2) (if B > Bc2)

,

(16)

where g=(J+2B+η−)/Jγ and Bc2 = J [(4−3γ2)1/2−
1]/2. Unfortunately, when B = Bc2, we cannot derive

a simple analytic expression for the negativity. Ex-

cept this point, N1-23 jumps from 1/6 to
√

2/6 in the

vicinity of B=0, and maintains this constant value

until B > Bc2, at which N1-23 decays off gradually

with the increasing value of B.

It is worthwhile to note that the bipartite entan-

glement is nonzero for the three-qubit XY (γ 6=1) and

XXZ models when B=0, in big contrast with the con-

currence between a pair of qubits, which are always

zero for the three-qubit XY and XXZ models. This

phenomenon indicates that for these two models, even

the ground state is not pairwise entangled, it still can-

not be separated because it is bipartite entangled.

For finite temperatures, the negativities changing

with B and T for different anisotropic parameters γ

and ∆ are shown in Fig. 3, where J is still set to be

1. One can see clearly that the magnetic field may

help to enhance the bipartite entanglement for lower

values of B and T , and except this region, the behav-

iors of the negativities are very similar to those of the

two-spin cases, i.e., when γ=0, the critical tempera-

ture Tc has no relation with B and only increases with

the increase of ∆ (cf. Fig. 3(a) and (b)). Moreover,

we may increase the entanglement by increasing T in

the region of B > J/2+J∆. When γ 6=0, there are

two different regions of the nonzero negativities, i.e.,

the main region and the sub-region. The main region

extends in terms of B and T when ∆ increases after

∆ > (γ2−1)/2, while the sub-region shrinks in terms

of B and T as ∆ increases.
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Fig. 3. The negativity N1-23versus B and T for various anisotropic parameters γ and ∆.
(a) γ=0, ∆=0; (b) γ=0, ∆=0.8; (c) γ=0.6, ∆=0; (d) γ=0.6, ∆=0.8.

4 Conclusions

In conclusion, we have investigated the proper-

ties of the bipartite entanglement in the two- and

three-spin Heisenberg model by applying the concept

of negativity. A general result is found that for the

two-spin model, the ground-state negativity always

decreases with the increase of B if ∆ < γ − 1, and

it may keep a constant value of 0.5 in the region of

B < J [(∆+1)2 − γ2]1/2 if ∆ > γ − 1. For thermal

entanglement, we show that when γ=0, one may in-

crease the bipartite entanglement by increasing T in

the region of B > J(∆+1), and when γ 6=0, there are

two distinct regions of the nonzero negativities, i.e.,

the main region and the sub-region. The main region

extends in terms of B and T when ∆ increases after

∆+1> γ, while the sub-region shrinks.

For the three-spin model, we only consider the

ground-state entanglement of the cases of γ=0 and

∆=0, and the results show that there are square wave

structures in the negativities. For thermal states, the

behaviors of the negativities are very similar to those

of the two-spin cases, except that the main region ex-

ists only when ∆ > (γ2−1)/2, and in the main region,

the magnetic field may help to enhance the bipartite

entanglement for lower values of B and T .
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