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Abstract In this paper, the nonlinear transport of intense bunched beams in electrostatic quadrupoles is
analyzed using the Lie algebraic method, and the results are briefly presented of the linear matrix approximation
and the second order correction of particle trajectory in the state space. Beam having K-V distribution and
Gaussian distribution approximation are respectively considered. A brief discussion is also given of the total
effects of the quadrupole and the space charge forces on the evolution of the beam envelope.
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1 Introduction

Lie algebraic method!" has been successfully im-
plemented in accelerator study. Until now, it has not
taken into account the nonlinear space charge effects.
One commonly used distribution which causes non-
linear space charge effect is Gaussian distribution. In
this paper, we present the polynomials approximation
of particle trajectories to the second order. We first
treat the K-V distribution. That is take the space-
charge forces to be linear, and postulate a beam hav-
ing a uniform charge distribution in the ellipsoid of
bunched beam in real space. Then we consider the
case of Gaussian distribution.

2 Hamiltonian and expansion

Let us consider the case of a perfect electrostatic
quadrupole of length L and employ the Cartesian co-
ordinates. The relativistic Hamiltonian for the mo-
tion of a particle of rest mass mg and charge ¢ in the
electromagnetic field is given by the expression!”

H= (m3c4+02pi+c2pj+02pi)l/2—i—qW. (1)

Here, = and y denote the two coordinates perpendic-
ular to the design trajectory, along which is z. p,, p,,
and p. are the canonical momenta. ¥ is the electric
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potential, which is a sum of the external potential ¥,
and the potential excited by the beam itself ¥,. For
the beam having a K-V distribution, ¥, and ¥, are
given by

e
!pe:_z(‘rz_yz) . (2)

To
U= —U (po® +pyy* +p1.27) - (3)

Here V' denotes the potential of the electrode and rg
is the inner radius of the electrostatic quadrupole. U
is defined as

31T,

= 4
87‘[50’}/0XYZ ( )

I is the average beam current. T} is the period of the
beam pulses. X, Y and Z are the beam dimensions.
z, is the relative longitudinal position of arbitrary
particle to the reference particle and is defined by

2z, =2z—gt. (5)

Vg is the velocity of reference particle. ~, is

1
VR 6
fo= =

s, [y and p, are the factors related to the shape of
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the beam, and

= XY2Z%X
. . B
o (X24+9V(X2+6 Y2+ (223 +§)
XY Z,

b= "5 %
Jo (V249 /(X2+(YV2+E) (223 +€)
XY Z~,

o=y

e 1
J > = dé¢.
0o (228 +)V(X2+E (V248 (225 +9) .
7
Define p, by writing
pt:_Ht (ta'rvyvzapzvpyapz)' (8)
Solving p. from Eq. (8), one obtains

pz:_K(Zax7y7t7pzapyapt)- (9)

where K is the Hamiltonian with the axis z as an
independent variable

K= —%\/—m%C“—cQ (p2+12) + (pe+q (e +1))° .
(10)
The design orbit passes through the center of the
quadrupole and has certain design energy, which can
be characterized by writing the equations

Pz = 0,z=0,
py=0,y=0, (11)
z
p? is a constant value, which is the value of p, for the
reference particle,

p?z _Ht| —Yomoc? . (12)

reference porbit
According to Eq. (11), following the Hamiltonian flow
generated by K along the design orbit does not lead
to an analytical map. Define “new” variables 7, z, v,
D+, Px, Pyby the relation

Pz = Pz, T=1T,
Py = Py, Y=Y, (13)

D= p7+ptat_7+_
Vo
This change of variables is a canonical transformation

arising from the transformation function

z
Fy=ap,+yp,+ <t—v—> (p-+p7). (14
0

In terms of these new variables, the design orbit can
be taken to be given by the equations

T=r=y=p,=p,=p,=0. (15)

The variables 7, x, y, and their canonical momenta,
are measured as the deviation from the design tra-
jectory. Let H denote the Hamiltonian for the new
variables. Then one has the relation

8F2

H=K+— 16

+5 (16)

Carrying out the prescription Eq. (16), one finds the
result

p-+p)
H=— -
cBo

1

E\/—méc“—cz (P2 +p2) + (D + 10+ (Ve +10))° .

(17)

Expanding the Hamiltonian H into Taylor series, one
can find for the first few polynomials the results

Py
Hy = —po— Lt
0 —Po 500
H1 = 07
2 2 k2 k2
H, = p;22+p_z+py+2poz_2p0y_
2po575¢ 2py  2po 2 2
Po%ﬁQ c’k?
2 b
- pip. | Pypr | wpkl
21707 Bac  2p5Boc 2p3Boc 27550
TkQ k2
Vo g, ok (18)
270500 2

Here p, denotes the magnitude of the design relativis-
tic mechanical momentum

Do ="YomoBocC . (19)
The parameters k,, k,, and k, are defined by
2q(V —Uperg)

k2=
¢ Yomo B33 ’

k2= M (20)
v Yomo 5?3 ’

e
T emefic? '

For the Gaussian distribution beam, ¥, can be ex-
pressed by!®!

 ITy
5T 8m3/2¢
a? y? /sy
J exp [_ (2X2+§ + 2Y24+¢ + 2722+ € de
) RXERHRY R+ '

(21)

Py is
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(VX228 YR 2P
1qT ¢ Foniptic <arcs1n < 7 "Xz 722

0o__ - _ 2 _
pt - Ht reference porbit = ~YoMoC

(22)

A2t eg/— X2+ 72272

The Hamiltonian has the same form of Eq. (17) and the same form of expansion as Eq. (18) but different k.,

VY2=Z292\ —X24+Y?
IqT | (X2—Y?) Zyo+ XY /Y2 = 2292 Eupipic | aresin 1), = +2 ~
5 2qV L Y Y2 —Z2~3
k p—
N pOBOC”Yg 4\/57[%501)0500)(}/ (X2 —YQ) (X2 —ZQ"Y(%)
VX2 7272 X2-Y?
IqTrf XY /X2~ szgFelliptic arcsin 0 )
\ X X2 — 722
AV27E opooc XY (X2 —Y2) (X2 = Z243) ’
VXIZY?\  X2— 722
1qTe | V—=X24+Y?2Z—iXY Eopiptic | arcsin , B
o 2V X X2_Yy? (23)
" poBocid 42 eopofocX Y V= X2+ Y2 (Y2 — Z293) ’
, (VTR X7
I YV=X24Y2(X?—=Z%92) —iX Z7 (X2 = Y?) Eaiptic (arcsm ( < T Y2°
T poYofoc U230 X 2= X2+ Y2 (X2~ Z2292) (Y2 — Z273)

. . VX2-Y2 X2 72%~2
iXZv (Y2 _ 2273) Floiptic (arcsm < e e Y;Yo

N2 eg X Z/—X24+ Y2 (X2 - 7243) (Y2 — Z273)

. . ] Here H!™ is defined as
3 Lie map and factorization ’

The mapping is given by the expression
2 One can obtain linear and the second order approxi-
M =exp (1 —J' Hdz 1) . (24) mation of the final coordinates by
20

Inserting the expansion into the expression (24) and E=exp(:fai)€, &=:fs:6. (28)
imagining that the result is written in factored prod-
uct form, the map can be written as

. 4 Particle trajectory
M = exp(—J :H2:+:H3:+~~~dz) =

° Let the particle transport through a small seg-

exp(c fa)exp (s f21). (25) ment of [ in the z direction. The first factor acts
Here f, and f; can be given by the expression!” on the variables and gives the linear matrix approx-

z = imation. If k2 > 0, the linear matrix transforms the
fa= _J Hydz, fs= _J Hy"dz. (26) | variables according to the rule
20 20

[ sin(k,l T
cos (k) pskz ) 0 0 0 0
L1 —pokysin(k,l) cos(k,l) 0 0 0 0 r
ZZ; 0 0 cosh(k,1) 7smh(kkyl) 0 0 Z;;
= Doky . (29)
P 0 0 pok, sinh(k,l) cosh(k,l) 0 ; h(()k ) b
inh(k,
1 0 0 0 0 cosh(k, 1) Yy, B
I 0 0 0 0 233 pok, sinh(k,l) cosh(k,l) |



212 Chinese Physics C (HEP & NP) Vol. 32

Physically, they describe horizontal focusing, verti- proximation.
cal defocusing, and longitudinal separating action of The second order correction can be obtained ac-
intense beam through quadrupole in linear matrix ap- cording to Eq. (21-—23) and the formulas are

T

Ak2 + k2 *

7 = zT{z%ck {[k2+—2k3<1+—v§nsnmkaz>—¢k2v§+—2k3<1+-vgnsnmka1>cosh<kfw

kokr (—1+73) cos(k,l)sinh(k,1) |
k2 1 2

. {k [k272 +2k2(14~2)] sin(k,l) sinh(k. 1) — k. k. (—1+72) cos(k,l)[cosh(k,1) — 1] } N
T e (4R34 k2)po foc

T

W{B (4F2 1 12)po

[k292 4 2k2(14~2)] cos(kgl)[cosh(k, 1) — 1]+ ko k. (—14+73) sin(k,!) sinh(k. 1) } N

{ (k273 +2k2(1+12)] cos(k, 1) sinh (k1) + k. k, (—1+~¢) sin(k,l)[cosh(k. 1) +1] } (30)
e e (4R +R2)pEocs ’

P, = —EET{poﬁoCkf. (k2 42k2(14~3)] cos(k,l) [cosh(kzg);-‘_ll]gz— kok.(—14~3)sin(k,l)sinh(k,1) } B

o kz[kf—|—2k:fc(1+fy§)]cos(kzl)sinh(kfl)—kzkf(—l+7§)sin(kzl)[cosh(k:TZ)—|—1] a
T (4k2 + k2)k. Bocyd

pzT{ﬁockI{ — k22 +2k2(1+2)) Sin(kxl)zl;yf ;:22]65 (1+2)]sin(k,1) cosh(k, 1) N

kok,(—1+73)cos(k.l)sinh(k,1) \ |
k2 + k2

{k (k24 2k2(1+~3)]sin(k, 1) sinh(k, 1) + k. k. (—1+~3) cos(k, 1) [cosh(k, 1) — 1] } (31)
(k2 —2k2(1+¢)]sinh(k, 1) + [—k2~5 +2k2(1+5)] sinh(k, 1) cosh(k1)
Y2 = y74 Bock, +
12— k2
k(= 1+98) cosh(l Dsinh(k-) |\
AR R2
. [R5 2K (13| sinha(k, ) sinh (k. 1)+, by (—1493) cosh(k, Dleosh(k) 1]
Sl ko (4k5 = k2)pofocyd
5 (k275 +2k2(1+13)] cosh(k,l)[cosh(k.1) = 1]+ kyk, (=1 4~7) sinh(k,l) sinh (k1) N
73 Boc
P (4k2 —K2)po
(k272 +2K2 (1 +72)] cosh(k, 1) sinh(k, 1) + k, k. (=1 +~2) sinh (k, 1) [cosh(k, 1) + 1] .
Pubr k- (4k5 — k2)p§ Bocyd ’
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- o [=kZ42k2(14-~3)] cosh(kyl)[cosh(k,1) — 1] — k, k- (—1+4~3) sinh(k, 1) sinh (k1)
Pys = YT Pobock, 2 +
Yy T

12 [—k2+2k2(1+93)] cosh(k,l) sinh (k1) — kyk.(—14~7) sinh(k,l)[cosh(k.1) +1] N
SN (4k2 — K2)k, foc ]

(k272 — 2k2(1 +~¢)] sinh(k, 1) + [— k2 + 2k2(1 +~3)] sinh(k, ) cosh (k1)
PyTY Bocky . 452 _ k2 :
vy T

kyk.(=14~3) cosh(k,l)sinh(k, 1) N
k2= k2
[—k242k2(1+5)]sinh(k, 1) sinh(k.1) — kyk, (=1 +5) cosh(k,l)[cosh(k.1) —1]

: T (A2~ R2)po o } (33)

ko (—1498)sin(2k,1) + (k2 + 2K2(1+3))sinh(k,1) |
2k, (4k2 +k2) Bocyd

{
{
{kzkf(—1+7§)sin(2kzl)+(kivé+2ki(1+v§>>sinh(kfl)} N
{
{

2k (4k2 +k2)p§ Bocys

, —kyk, (—=1+72)sinh(2k, 1) + [~ k2 + 2k2(1 +~2) sinh (k. 1)] .
v 2k, (4k2 — k2)Bocd

hyke (—1+93)sinh(2k, 1) + (K23 +2k5(1+43)) sinh (k1) |
2k, (42— K2)p3Bocd

xp,.{kQ (—142)[cos(2k, 1) — cosh(k.1)] } oy {k2 (—14~2)[cosh(2k,l) — cosh(k.1)] }
U (4k2 +k2)pofocs U (4k§ —k2)poBocyd

9 sinh(kTZ):—iinh(ZQkTZ) L kTﬁoc'yg[—l—273+2fy§cosh(kfl)]sinh(kfl) N
2k, P86 ¢*v5 2

[—1+cosh(k,1)][1+2cosh(k,1)]
porf S } (39

T

o —(4k2 4+ k2) (1 4+72) + k2 (=1 4+72) cos(2k,1) + 2[k2 + 2k2(14~2)] cosh(k. )
Pry, = 74 kipofoc 2121 12) +

2 5C—(4ki+k3)(1+7§)—ki(—l+7§)COS(21€11)+2[1€37§+2ki(1+v§)]cosh(kfl) N
P A(4k2 + k2)po

) ) —(4k2 = k%) (1 +~3) — k2 (—1+~2) cosh(2k, ) + 2[— k2 + 2k2 (1 +~2)| cosh(k, 1)
{_kypoﬁoc Y Y }—1—

4(4K2 — k2)

2§ o TSR (93) + 2 (L) cosh(2by )+ 21 K28+ 2051 +7°)coshlknl) |
Py Poe 4(4k2 = k2)p,

. { K2po B2 [—12 4 (1472) cosh(l;l)][—l +2cosh(k,1)] } N

- kwkrﬁoc(

—1412)[~k, sin(2k,1) + 2k, sinh(k. |
- 70) [ Fr sin(2k, 1) + 2k, sinh( )]}+

2(4k2 + k2)

- kyk-rﬁoc

oy (—1498)[—k- sinh(2k, 1) + 2k, sinh(k, )] }+

2(4k2 — k2)

pi{ [_1 +COSh(kTZ)][12—; Qggcj;(l +7§) COSh(kq—l)] } +pr7’{kfﬁoc[—’}/§ + (1 +7§)cosh(kfl)] Slnh(le)} (35)
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The third and higher order correction can be cal-
culated similarly.

5 Discussion

If k2 <0, to get M,, just substitute k, with ik,. In
this case, the particle coordinates related to the ref-
erence particle will have an exponential increase with
the growth of transport distance.

Just as expected, when the beam current is low,
the effects of the quadrupole are prominent and the
total effects are focusing in the = direction and defo-
cusing in the y direction. With the growth of beam
current, the space charge effects and thus the de-
focusing effects will increase. When the beam cur-
rent is high enough to exceed the confinement of the

quadrupole, the total effects are defocusing both hor-
izontally and vertically. In either case the effects of
space charge effects in the longitudinal are to increase
the separating distance.

6 Conclusion

According to the calculation, the polynomials ap-
proximations of particle trajectory with beam having
K-V distribution and Gaussian distribution have the
same form but different coefficients. It has also been
shown that the effect of space charge effects is de-
focusing. When the space charge effects exceed the
confinement of the quadrupole, the bench will grow
up rapidly.
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