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Implementation of upper limit calculation for a Poisson

variable by Bayesian approach *
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Abstract The calculation of Bayesian confidence upper limit for a Poisson variable including both signal and

background with and without systematic uncertainties has been formulated. A Fortran 77 routine, BPULE,

has been developed to implement the calculation. The routine can account for systematic uncertainties in the

background expectation and signal efficiency. The systematic uncertainties may be separately parameterized

by a Gaussian, Log-Gaussian or flat probability density function (pdf). Some technical details of BPULE have

been discussed.
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1 Introduction

A group of particle physics experiments involves

the search for new signal or measuring small signal

at the circumstance with significant background. A

limit on, or a measurement of, a physical quantity

at a given confidence level is usually set by compar-

ing a number of detected events with the expected

number of background events in the “signal” window

where the signal events (if exist) shall reside. How

well this comparison can be made for the observed

events and the expected background depends strongly

on the systematic uncertainties existing in the mea-

surement. Therefore, systematic uncertainties must

be taken into consideration in the limit or confidence

belt calculation.

Conrad et al.[1] reviewed the methods of con-

fidence belt construction in the frame of frequen-

tist statistics, and developed a FORTRAN program,

POLE[2], to calculate the confidence intervals for a

maximum of the observed events of 100 and a maxi-

mum signal expectation of 50. The ordering schemes

for frequentist construction supported are the Ney-

man method[3], likelihood ratio ordering[4] and im-

proved likelihood ratio ordering[5]. The systematic

uncertainties in both the signal and background ef-

ficiencies as well as systematic uncertainty of back-

ground expectation have been taken into account in

the confidence belt construction by assuming a prob-

ability density function (pdf) which parameterizes

our knowledge on the uncertainties and integrating

over this pdf. This method, combining classical and

Bayesian elements, is referred to as semi-Bayesian ap-

proach.

In the frame of Bayesian statistics[6], Narsky[7, 8]

depicted the estimation of upper limits for Pois-

son statistic with the known background expecta-

tion. Treatment of background uncertainty is dis-

cussed with the flat prior for simplified cases of back-

ground expectation distributions in Refs. [9, 10]. In-

clusion of systematic uncertainties in both the signal

efficiency and background expectation in the upper

limit calculation via Bayesian approach has been re-

cently discussed by Yongsheng ZHU[11].

In this paper, we describe the implementation

of Bayesian confidence upper limit calculation for

a Poisson variable including both signal and back-

ground with and without systematic uncertainties

and its relevant FORTRAN program BPULE[12].

2 Formulation for Bayesian upper

limit calculation

For the detailed discussion on the Bayesian confi-
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dence upper limit calculation for a Poisson process

with and without systematic uncertainties, please re-

fer to Ref. [11]. Here, we only list the necessary for-

mulae used in the calculation. Throughout this paper

we assume that in the signal window, where the sig-

nal events (if exist) shall reside, the number of signal

events is a Poisson variable with unknown expecta-

tion s to be inferred, and the number of background

events is a Poisson variable with known expectation

b, and the conditional pdf of observing n total events

in the window is represented by q(n|s)b , which will

be discussed below in this section.

The upper limit of the expected number of signal

events at given confidence level CL=1− α, SUP, is

given by:

1−α =

∫SUP

0

h(s|n)ds , (1)

where h(s|n) is the posterior pdf, and can be ex-

pressed as

h(s|n) =
q(n|s)bπ(s)∫

∞

0

q(n|s)bπ(s)ds

. (2)

π(s) is the non-informative prior:

π(s)∝ 1

(s+b)m
, s > 0, b > 0, 0 6 m 6 1, (3)

where m=0 corresponds to Bayes prior, m=0.5 to

1/
√

s+b prior, and m=1 to 1/(s + b) prior. The

statistical bases on these three priors are referred to

Refs. [13—16]. One can choose m value as he/she

thinks appropriate, however, it should always be kept

in mind that different m values will give different an-

swers for the upper limit. The expected coverage and

length of confidence intervals constructed with these

three priors and with the Neyman construction[3] and

unified approach[4] can be found in Ref. [8]. It has

been shown that the 1/
√

s+b prior is the most versa-

tile choice among the Bayesian methods, it provides a

reasonable mean coverage for the confidence interval

and upper limit for Poisson observable.

2.1 Upper limit without inclusion of system-

atic uncertainties

In the case that the systematic uncertainties of

the signal efficiency and background expectation can

be neglected, the signal expectation s is an unknown

constant and the background expectation b is a known

value. In this case, q(n|s)b in Eq. (2) is simply equal

to the usual Poisson probability p(n|s)b

p(n|s)b = e−(s+b) (s+b)n

n!
, (4)

and the posterior pdf is then given by

h(s|n) =
(s+b)n−me−(s+b)

Γ (n−m+1, b)
, (5)

where

Γ (x,b) =

∫
∞

b

sx−1e−sds , x > 0, b > 0 (6)

is an incomplete gamma function. Substituting this

posterior pdf into Eq. (1) we obtain

α =
Γ (n−m+1,SUP +b)

Γ (n−m+1, b)
. (7)

If the flat prior (m=0) is used, Eq. (7) turns into

α = e−SUP
•

∑n

k=0

(SUP +b)k

k!
∑n

k=0

bk

k!

. (8)

The upper limit SUP at a given confidence level

CL=1−α can be acquired by solving Eq. (7) or Eq. (8)

numerically from the measured values of n and b.

2.2 Upper limit with inclusion of systematic

uncertainties

Now we turn to the question of inclusion of sys-

tematic uncertainties. In this case, both the signal

expectation and background expectation are not the

constants, but the variables; they have respective dis-

tributions.

First we consider only the uncertainty of back-

ground expectation is present, and the distribution of

the background expectation is represented by a pdf

fb′(b,σb) with the mean b and standard deviation σb.

The conditional pdf is expressed as

q(n|s)b =

∫
∞

0

p(n|s)b′
•fb′(b,σb)db′ , (9)

where p(n|s)b′ has the same expression in Eq. (4) with

b replaced by b′.

Next we take into account the uncertainties of the

signal efficiency and background expectation simul-

taneously, and assume they are independent of each

other. The distribution of the relative signal efficiency

ε (with respect to the predicted value of the signal

detection efficiency η) is described by a pdf fε(1,σε)

with the mean 1 and standard deviation σε. The con-

ditional pdf now is

q(n|s)b =

∫
∞

0

∫
∞

0

p(n|sε)b′fb′(b,σb)fε(1,σε)db′dε ,

(10)

where p(n|sε)b′ represents that in Eq. (4), b is re-

placed by b′, and s by sε. One notices that the lower

limits of integrals in Eqs. (9), (10) are all zeros, which

are the possible minimum value of any efficiencies and

number of background events. One can then calculate

the upper limit SUP on s at any given confidence level

with inclusion of systematic uncertainties in terms of

Eqs. (1), (2).
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3 BPULEµµµan algorithm for calculat-

ing Bayesian upper limit

We have developed an algorithm for calculating

the upper limit (UL) on Poisson observables for any

given confidence level with or without inclusion of

systematic uncertainties in background expectation

and signal efficiency. It has been implemented as a

FORTRAN program, BPULE (Bayesian Poissonian

Upper Limit Estimator)[12], where an iterative proce-

dure is carried out by minimizing the difference be-

tween the given confidence level and the calculated

value in terms of Eqs. (1), (2) until a convergence

is reached. Some technical issues of BPULE are de-

scribed below.

3.1 Upper limit without inclusion of system-

atic uncertainties

To determine the upper limit without inclusion of

systematic uncertainties, we need to solve Eq. (7) nu-

merically. Given the initial value for SUP first, we

calculate the corresponding α value by calling the

subroutine GAMDIS from CERN Program Library

(G106)[17]. It can be easily shown from Eq. (7) that

α =
1−GAMDIS(SUP +b,n−m+1)

1−GAMDIS(b,n−m+1)
. (11)

By minimizing the object function F=(CL−CL0)
2,

with CL and CL0 being the calculated and given con-

fidence level, respectively, we obtain the desired solu-

tion SUP.

3.2 Upper limit with inclusion of systematic

uncertainties

To determine the upper limit with inclusion of sys-

tematic uncertainties, we need to solve Eq. (1) numer-

ically together with Eqs. (2), (9), (10). The denom-

inator of h(s|n) shown in Eq. (2) is an integral over

s with the upper bound of infinity, which makes the

numerical calculation difficult. To ease the calcula-

tion, we use a variable transformation of s to z with

z=exp(−s), then the lower and upper bounds for s,

(0,∞), transformed to (0,1) for z:∫
∞

0

g(s)ds =

∫ 1

0

1

z
g(s(z))dz . (12)

Then, Eq. (1) can be rewritten as

1−α=

∫SUP

0

q(n|s)bπ(s)ds
∫
∞

0

q(n|s)bπ(s)ds

=

∫1

zUP

1

z
q(n|s(z))bπ(s(z))dz

∫ 1

0

1

z
q(n|s(z))bπ(s(z))dz

,

(13)

where zUP=exp(−SUP). Notice that q(n|s)b now is an

one-fold or a two-fold integral, therefore, both the de-

nominator and numerator of Eq. (13) are two-fold or

three-fold integrals, which we calculate by using the

subroutine DGMLTN from CERN Program Library

(D110).

3.3 Input of BPULE

To run the BPULE, the following valuables are

required to input:

ID, IBK, IE,N,B,SIGBK,SIGE,ETA,CL,AM.

Their meanings are listed in Table 1.

Table 1. Input variables of BPULE and their
meanings.

notation meaning

ID flag to select the type of the upper limit to
be calculated.

IBK flag to select the distribution for bkgd expectation.
IE flag to select the distribution for signal detection

efficiency.
N number of total events observed in signal window,n.
B predicted bkgd expectation in signal window,b.

SIGBK standard deviation of the distribution for
relative bkgd expectation,σb/b.

SIGE standard deviation of the distribution for
relative signal efficiency,σε .

ETA predicted signal detection efficiency,η.
CL confidence level, CL = 1−α.
AM prior selection. AM=m, prior is 1/(s+b)m ,

0 6m 6 1.

Flag ID can take four values with the following as-

signment: 1—UL without considering any systematic

uncertainties; 2—UL incorporating systematic uncer-

tainty of bkgd expectation; 3—UL incorporating sys-

tematic uncertainty of signal efficiency; 4—UL incor-

porating systematic uncertainties of bkgd expectation

and signal efficiency simultaneously, and they are as-

sumed to be independent of each other.

For the distribution of relative signal efficiency

(signal efficiency divided by η) or relative background

expectation (background expectation divided by b),

three types of functions with the mean 1 and standard

deviation σ are supported: Gaussian, Log-Gaussian

and flat distributions. They correspond to flag value

of IBK or IE of 1, 2, 3, respectively. For the Gaussian

distribution, the pdf is

fx(1,σ) =
1√
2πσ

e−
(x−1)2

2σ2 , x∈ (−∞,∞). (14)

For the Log-Gaussian distribution, the pdf is

fx(1,σ) =
1√

2πσxx
e
−

(lnx−µ)2

2σ2
x , x∈ (0,∞), (15)

where µ = − ln(1+σ2)/2, σx =
√

ln(1+σ2). For the

flat distribution, the pdf is

fx(1,σ) =
1

xmax−xmin

, x∈ [xmin,xmax], (16)

where xmin = 1−
√

3σ, xmax = 1+
√

3σ.
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3.4 Bounds of the integral of Eqs. (9), (10)

Although the bounds of the integral of Eqs. (9),

(10) are written as (0,∞), however, in the numerical

calculation, the integral over 0 to ∞ is difficult to im-

plement. Instead, we use different lower and upper

bounds for different functions shown in Eqs. (14)—

(16). For the Gaussian pdf, the lower and upper

bounds, xmin and xmax, are set to 0 and 1+4σ, re-

spectively. In the region of x > xmax, the integrated

probability is less then 3.2× 10−5, which is negligi-

ble. One must be aware that, Gaussian pdf spans

from −∞ to +∞, the program user must consider

if the Gaussian pdf is an appropriate description for

the distribution of relative signal efficiency or rela-

tive background expectation. In the case of σ <1/3,

the cut-off effect below x = 0 is negligible, therefore,

the use of Gaussian pdf has practically no problem.

For the Log-Gaussian pdf, xmin and xmax are set to

0 and eµ+4σx , respectively, over which the cumulative

probability is larger than 0.99997. For the flat distri-

bution, xmin and xmax are given in Eq. (16), which is

determined by the requirements of mean value being

1 and standard deviation being σ. Besides, there are

common constraints for xmin and xmax: if the xmin de-

termined above is less then zero, then the xmin is set to

zero; if the xmax for relative signal detection efficiency

is larger than 1/η, then the xmax is set to 1/η, to en-

sure the signal detection efficiency not larger than 1.

3.5 Run the BPULE

The algorithm BPULE contains two executable

files: BPULE.exe for calculating single upper limit

while BPULE batch.exe for a batch of upper lim-

its. They can be downloaded from Ref. [12]. Type

“BPULE.exe” to run the program, the prompt is as

follows:

“(notice types of variables)

Input ID, IBK, IE,N,B,SIGBK,SIGE,ETA,CL,AM”.

Then you type in the corresponding values, for ex-

ample,

4 1 1 10 7. 0.1 0.08 0.15 0.9 0.

The program will automatically generate an output

file “BPULE.out”, which gives, in addition to the

input values, two numbers:

SUP—the upper limit of s with given confidence

level,

FCN—0.001
√

FCN =

|CL(calculated)-CL(given)|/ CL(given).

To run the BPULE batch.exe, an input file,

BPULE batch.int, must be prepared beforehand,

which should contain the following information:

k (number of upper limits to be calculated)

ID IBK IE N B SIGBK SIGE ETA CL AM (1)

ID IBK IE N B SIGBK SIGE ETA CL AM (2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ID IBK IE N B SIGBK SIGE ETA CL AM (k).

The program will automatically generate an out-

put file “BPULE batch.out”, which gives, in addition

to the input values, k corresponding upper limits.

4 Summary

We have formulated the upper limit calculation

at any given confidence level in the line of Bayesian

approach for the Poisson observable incorporating

systematic uncertainties in both the signal efficiency

and background expectation prediction. A FOR-

TRAN program, BPULE, has been developed to

implement the upper limit calculation. Some techni-

cal details have been described. The typical results

acquired by BPULE are referred to Ref. [11].

The author gratefully acknowledges the helps pro-

vided by Dr. LI Gang in programming.
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