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Comparison between formulas of rotational band for

axially symmetric deformed nuclei *
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Abstract The experimental rotational spectra of the deformed nuclei available in even-even and odd-A nuclei

in the rare-earth and actinide regions are systematically analyzed with several rotational spectra formulas,

including Bohr-Mottelson’s I(I+1)-expansion, Harris’ ω2-expansion, ab and abc formulas. It is shown that the

simple 2-parameter ab formula is much better than the widely used 2-parameter Bohr-Mottelson’s AB formula

and Harris’ αβ formula. The available data of the rotational spectra of both ground-state band in even-even

nuclei and one-quasiparticle band in odd-A nuclei can be conveniently and rather accurately reproduced by

ab formula and abc formula. The moment of inertia and the variation with rotational frequency of angular

momentum can be satisfactorily reproduced by ab and abc formulas.
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1 Introduction

It is well-established[1] that there exists a large

amount of nuclear rotational spectra, particularly

in the well-deformed rare-earth and actinide nuclei.

Based on the symmetry (axial and reflective) and un-

der adiabatic approximation, Bohr and Mottelson[1]

developed the famous angular momentum I(I+1) ex-

pansion for nuclear rotational spectra. An angular

frequency ω2 expansion for nuclear rotational spectra

was developed by Harris[2]. Later it was found that[3]

the convergence of the Harris’ ω2 expansion is better

than the I(I + 1) expansion. Since then, in addi-

tion to Bohr-Mottelson 2-parameter angular momen-

tum AB formula, the Harris 2-parameter ω2 expan-

sion (αβ) formula has been widely used for analyz-

ing various nuclear rotational spectra. It was shown

by A. Klein et al.[4] that the Harris’ αβ formula is

equivalent to the variable moment of inertia model

presented by Scharff-Goldhaber et al[5]. A simple

phenomenological 2-parameter formula for nuclear

rotational spectra was presented by Holmberg and

Lipas[6]. This type of the above 2-parameter formula

was theoretically derived[7, 8] for a well-deformed nu-

cleus with small axial asymmetry (sin2 3γ � 1) from

Bohr Hamiltonian[9, 10] with a β-separate potential.

Then this type of 2-parameter expression is called ab

formula. In Ref. [11], a modified 3-parameter expan-

sion (called abc formula) was derived by adding an

anharmonic term in Bohr Hamiltonian. In this paper

the experimental rotational spectra newly available

for the well-deformed rare-earth and actinide nuclei

are systematically analyzed by the above formulas.

All the experimental data are from the database of

Nuclear Data Sheets, NuDat or ENSDF. In Section 2

the ground-state bands (gsb) of even-even nuclei are

analyzed. The analyse for the one-quasiparticle rota-

tional bands of odd-A nuclei are given in Section 3.

In Section 4 two approaches to extract the moments

of inertia (MOI) are presented. The odd-even dif-

ference in MOIs between the neighboring nuclei and

their variation with rotational angular frequency ω is

investigated in Section 4. A brief summary is given

in Section 5.

2 The ground state rotational bands

of even-even nuclei

The formulas of AB, ABC, ABCD and ab, abc

will be used to study the property of the gsb of even-
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even nuclei in this section. Bohr et al.[1] presented the

expansion formula of rotational band at the consider-

ation of axial symmetry and adiabatic approximation:

E = Aξ2 +Bξ4 +Cξ6 +Dξ8 + . . . , (1)

In the above equation ξ2 = I(I + 1)−K2, for even-

even nuclei, K = 0. Usually there are at most four

parameters like ABCD. The first item of the above

equation is purely rotational, and the other items are

vibrational corrections. Our calculation shows that

the formula is good before the back bending[12].

One of the generally adopted expansion formulas

of the rotational bands is Harris ω2 expansion[2]:

E = αω2 +βω4 +γω6 + . . . , (2)

The definition of ω and its relation with angular mo-

mentum I will be discussed below.

The summarization of experimental data indicates

that two parameter AB formulas and Harris expan-

sion already have a satisfactory agreement[13], and

these two formulas are most popular in the analysis

of experimental data.

Zeng J Y et al.[7, 8] assumed that the β item and

γ item in Bohr Hamiltonian could be approximately

separated and the γ deformation of nuclei is small,

then the following two parameters formula of rota-

tional band is derived:

E = a[
√

1+bI(I +1)−1] . (3)

Considering a higher order anharmonic item in

Bohr Hamiltonian, Zeng J Y et al.[11] found an abc

formula of rational band:

E = a[
√

1+bI(I +1)−1]+cI(I +1) . (4)

Mottelson et al.[3, 14] believe that two-parameter

Harris formula is better than AB formula. The reason

is that if we assume αβ formula and ABCD expan-

sion both agree well with the experimental data, then

there must be some definite relations between the pa-

rameters, and we could use them to verify whether the

αβ formula is in agreement with the above assump-

tion. Based on the Harris two-parameter expansion

E = αω2 +βω4 , (5)

one can conclude that the parameters ABCD depend

on each other and there are two equations. They are,

R1 ≡
AC

4B2
= 1 , (6)

R2 ≡
A2D

24B3
= 1 . (7)

They used these equations to analyze some data of ro-

tational bands and they claimed these relations were

well satisfied. However, our systematic analysis of

rare-earth nuclei and actinide nuclei does not favor

their claim.

Similar argument exists for ab and ABCD formu-

las. We can get two equations of the parameters in-

volved and they can be tested with the experimentally

extracted parameters a, b, A, B, C, D, formula[13]:

R1 =
1

2
, (8)

R2 =
5

24
. (9)

Obviously the result from Harris expansion is to-

tally different from the ab formula one. The va-

lidity of the above four relations of the parameters

will be discussed as follows. The ground state ro-

tational bands of rare-earth and actinide even-even

nuclei are discussed, with γ transition energy lev-

els before back bending, i.e., I 6 Ic. These nu-

clei are 148—150Ce, 150—156Nd, 152—160Sm, 154—162Gd,
156—164Dy, 160—170Er, 162—176Yb, 162—184Hf, 166—188W,
170—194Os and 224—226Ra, 224—234Th, 230—238U,
236—244Pu, 244—248Cm, 256Fm, 252No etc., and there

are 95 ground state rotational bands.

Two typical examples are given in Table 1 and 2.

Table 1. The gsb of 174Yb. The units for A, B, C, D, a and c are all keV, b is dimensionless.
174Yb, Ic=20

I Eγ/keV AB ABC ABCD ab abc
20 774.0 758.9 775.5 773.7 768.7 774.0
18 719.0 719.5 717.6 719.7 718.3 719.3
16 660.0 667.6 658.6 660.0 661.6 660.0
14 596.0 604.7 595.2 595.1 597.9 595.3
12 525.0 532.2 525.6 524.5 527.1 524.6
10 446.1 451.5 448.5 447.4 449.0 447.4
8 363.9 364.0 364.1 363.5 363.9 363.4
6 272.9 271.2 272.9 272.9 272.6 272.8
4 176.6 174.4 176.4 176.7 176.1 176.7
2 76.5 75.2 76.3 76.5 76.1 76.5

A B×103 C×106 D×109 χ×102

12.56 −3.711 1.239
12.75 −5.672 3.471 0.23
12.78 −6.391 6.786 −4.279 0.122

a×10−3 b×103 c χ×102

14.54 1.75 0.393
6.539 2.85 3.469 0.114
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Table 2. The gsb of 238U. The units for A, B, C, D, a and c are all keV, b is dimensionless.

238U, Ic=28.0

I Eγ/keV AB ABC ABCD ab abc
28 499.3 470.8 503.2 497.8 498.2 498.8
26 482.8 477.1 481.5 485.3 484.0 484.2
24 467.0 474.3 463.3 468.2 467.6 467.6
22 448.9 463.0 445.5 448.3 448.6 448.6
20 427.9 443.9 426.0 426.0 426.8 426.6
18 402.6 417.9 402.9 400.9 401.6 401.4
16 372.9 385.5 375.3 372.3 372.6 372.4
14 338.8 347.5 342.3 339.6 339.4 339.2
12 300.6 304.6 303.9 302.0 301.5 301.4
10 257.8 257.7 260.1 259.2 258.7 258.7
8 211.0 207.2 211.4 211.4 211.2 211.2
6 158.8 154.1 158.5 159.1 159.1 159.1
4 103.5 99.0 102.5 103.1 103.2 103.3
2 44.9 42.7 44.3 44.7 44.7 44.8

A B×103 C×106 D×109 χ×102

7.122 −1.877 3.274
7.403 −3.24 1.206 0.776
7.466 −3.904 2.724 −0.987 0.372

a×10−3 b×103 c χ×102

6.546 2.286 0.231
6.313 2.343 0.092 0.226

We can learn from Table 1 and 2 that the ab

formula is the best in two parameters formulas and

ABCD formula also has a satisfactory agreement

with the experiment.

Figures 1 and 2 show how relations 6, 7, 8, 9 of

A,B,C,D hold for the above rotational bands. It is

obvious that ab formula seems better than Harris two

parameters formula[15]. Some R1, R2 of nuclei are not

shown in the figure because they have large deviations

and are out of range.

Fig. 1. The distribution of R1 for the gsbs of
even-even nuclei. M: Ce; O: Nd; F: Sm; J:
Gd; I: Dy; N: Er; H: Yb; �: Hf; �: W; ♦:
Os; �: Ra; �: Th; �: U; �: Pu; C: Cm; B:
No.

Figures 1 and 2 show that R1 and R2 derived from

ab formula is obviously better than that from Harris

expansion, and this means ab formula is a better two

parameters formula which agrees well with the exper-

imental data[15].

Fig. 2. The distribution of R2 for the gsbs of
even-even nuclei. The illustration is the same
as in Fig. 1.

These formulas of rotational band are fine with

even-even nuclei[12], but in the following we will see

that they are not so good when applied to odd-even

nuclei. This is because all these formulas are estab-

lished with adiabatic approximation[11], which means

quasiparticle excitation and rotational excitation can

be approximately separated in nuclei. This is also

why Xu et al.[13] used only the bands of even-even

nuclei. We will discuss odd-A bands as well. The

rotational band of even-even nuclei is described bet-

ter by the above equations for there exists a large

energy gap between the vacuum quasiparticle band

and the two quasiparticle band, ∼1 MeV, and mean-

while the rotational energy is small, ∼100 keV. This

situation is different for odd-even nuclei, while ev-

ery odd-even nucleus has some single quasiparticle

bands and the energy gaps between these bands are

small and comparable to rotational energy, so there

may exist a mixing between these single quasiparticle
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bands. This mixing breaks adiabatic approximation

and leads to bad performance of the formulas.

3 One-quasiparticle rotational bands

of odd-A nuclei

The formulas of AB, ABC, ABCD and ab,

abc are used to study quasiparticle rotational bands

of odd-even nuclei in this section. More than

300 quasiparticle bands are included, in four cases:

odd proton rare earth nuclei, 153—155Eu, 153—159Tb,
159—165Ho, 159—169Tm, 163—177Lu, 165,167,171—181Ta,
171—185Re; odd neutron rare earth nuclei, 153Nd,
149—153Sm, 153—157Gd, 155—161Dy, 159—163,167Er,

163—177Yb, 165—177Hf, 171—181W, 171—185Os; odd pro-

ton actinoid nuclei, 231Pa, 237Np, 241Am; odd neutron

actinoid nuclei, 233Th, 233—237U, 243Pu. These K =
1

2
one-quasiparticle bands are not included here and will

be discussed later.

Usually we take K as 0 when dealing with odd-

even nuclei, the following two tables can show if this

assumption is appropriate.

The results in Table 3 and 4 indicate that a dif-

ference in K only slightly changes the parameters of

these formulas and the error of fitting remains almost

the same, so we will take K as 0 while dealing with

all rotational bands.

Table 3. K = 0.

153Eu, E0 = 0, Kπ =
5

2

+

, π
5

2
[413], α =−1/2, Ic = 19.5

I Eγ/keV AB ABC ABCD ab abc
19.5 650.9 639.5 652.5 651.2 655.2 651.6
17.5 621.3 622.6 618.5 620.6 620.2 619.9
15.5 580.6 588.9 579.6 580.5 578.8 580.3
13.5 530.7 540.3 532.3 531.7 529.9 531.9
11.5 473.3 479.0 475.0 473.8 472.5 474.0
9.5 406.9 406.7 406.9 406.2 405.6 406.3
7.5 329.6 325.6 328.7 328.7 329.1 328.7
5.5 241.7 237.5 241.7 242.3 243.2 242.2

A B×103 C×106 D×109 χ×102

12.14 −5.149 1.345
12.47 −7.646 4.184 0.270
12.55 −8.759 8.783 −5.768 0.169

a×10−3 b×103 c χ×102

7.926 3.192 0.375
12.82 2.345 −2.484 0.192

Table 4. K = 2.5.

153Eu, E0 = 0, Kπ =
5

2

+

, π
5

2
[413], α =−1/2, Ic = 19.5

I Eγ/keV AB ABC ABCD ab abc
19.5 650.9 639.5 652.5 651.2 655.2 651.6
17.5 621.3 622.6 618.5 620.6 620.2 619.9
15.5 580.6 588.9 579.6 580.5 578.8 580.3
13.5 530.7 540.3 532.3 531.7 529.9 531.9
11.5 473.3 479.0 475.0 473.8 472.5 474.0
9.5 406.9 406.7 406.9 406.2 405.6 406.3
7.5 329.6 325.6 328.7 328.7 329.1 328.7
5.5 241.7 237.5 241.7 242.3 243.2 242.2

A B×103 C×106 D×109 χ×102

12.07 −5.149 1.345
12.37 −7.567 4.184 0.270
12.44 −8.596 8.639 −5.768 0.169

a×10−3 b×103 c χ×102

8.005 3.129 0.375
12.91 2.311 −2.484 0.192

The relations of R1, R2 of odd-even nuclei are also

studied and the results are listed in Figs. 3 to 6. It

shows that even the results of odd-even nuclei is some-

what bad compared with the even-even nuclei, the

experimental data can also demonstrate that ab for-

mula is better than Harris two parameters formula.

Some R1, R2 of nuclei are not shown in Figs. 3 to 6

because they are out of range with large deviations.
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Fig. 3. The distribution of R1 of rotational
bands of odd-Z nuclei.

Here R1 =
AC

4B2
. The legends are as follows:

M: π
3

2
[411]; O: π

3

2
[521]; F: π

3

2
[651]; J:

π
5

2
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5

2
[404]; N: π

5

2
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5

2
[523];

�: π
5

2
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Fig. 4. The distribution of R1 of rotational
bands of odd-N nuclei.

The legends are: M: ν
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2
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2
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ν
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2
[631]; I: ν

5

2
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Fig. 5. The distribution of R2 of rotational
bands of odd-Z nuclei. The illustration is the
same as in Fig. 3.

Fig. 6. The distribution of R2 of rotational
bands of odd-N nuclei. The illustration is the
same as in Fig. 4.

4 Extraction of the moments of iner-

tia

The normally deformed rotational bands of even-

even and odd-even nuclei are studied in the above

sections. Here we will study the odd-even difference

of moment of inertia by extracting the bandhead mo-

ment of inertia from the experimental data.

4.1 Extraction of MOI directly via the ob-

served rotational spectra

The moment of inertia J (1) can be directly ex-

tracted from the experimental data. It can also be

extracted from formulas like AB et al[16]. Firstly we

will introduce the method of directly extracting the

rotational angular frequency and the moment of in-

ertia from experiment. The definition of angular fre-

quency ω is:

~ω =
dE

dIx

, (10)

E is the rotational energy, and Ix is the projection of

angular momentum I on axis x:

Ix(I) =

√

(

I +
1

2

)2

−K2 ≈
√

I(I +1)−K2 , (11)

Substituting continuous difference with discrete dif-

ference, we get

~ω(I)≈
E(I +1)−E(I−1)

Ix(I +1)−Ix(I−1)
=

Eγ(I +1→ I−1)

Ix(I +1)−Ix(I−1)
,

(12)

For K = 0 band Ix(I +1)−Ix(I−1) = 2, so

~ω(I) =
1

2
Eγ(I +1→ I−1) . (13)

The definition of type-I kinematic moment of inertia

J (1) is Ix = ωJ (1)/~, which means

J (1)

~2
=

Ix

~ω
=

Ix

dE

dIx

=
1

2

dI2
x

dE
. (14)
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The definition of Ix is given earlier. Because dI2
x

=

2
(

I +
1

2

)

dI and J (1) is the function of I , we have

J (1)(I)

~2
=

2I +1

Eγ(I +1→ I−1)
. (15)

For high K rotational band, if the splitting of signa-

ture is small, we have

~ω

(

I +
1

2

)

=
Eγ(I +1→ I)

Ix(I +1)−Ix(I)
≈

Eγ(I +1→ I), (I,K � 1). (16)

J (1)

(

I +
1

2

)

~2
=

I +1

Eγ(I +1→ I)
. (17)

The definition of type-II dynamic moment of in-

ertia J (2) is

J (2)

~2
=

(

d

dIx

dE

dIx

)

−1

=

(

d2E

dI2
x

)

−1

, (18)

which is applicable to super deformed bands. Con-

sidering the following equations,

~ω(I +1) =
Eγ(I +2→ I)

Ix(I +2)−Ix(I)
, (19)

~ω(I−1) =
Eγ(I → I−2)

Ix(I)−Ix(I−2)
, (20)

thus

J (2)(I) ≈

(

1

∆Ix

∆2E

∆Ix

)

−1

=

4

Eγ(I +2→ I)−Eγ(I → I−2)
. (21)

4.2 Extraction of MOI via formulas of rota-

tional spectra

In this subsection we will discuss the method of

extracting moment of inertia from formulas of rota-

tional band like AB, ab, etc.

According to Bohr-Mottelson I(I +1) expansion,

for K = 0 band ξ2 = I(I +1), we have

J (1)(I)

~2
=

(

1

Ix

dE

dIx

)

−1

=
1

2A

(

1+
2B

A
ξ2+

3C

A
ξ4+. . .

)

−1

,

(22)

J (2)(I)

~2
=

(

d2E

dI2
x

)

−1

=
1

2A

(

1+
6B

A
ξ2+

15C

A
ξ4+. . .

)

−1

.

(23)

For K 6= 0 bands, ξ2 = I(I +1)−K2. The bandhead

moment of inertia J0 =
~

2

2A
.

According to Harris ω2 expansion,

J (1)(ω)

~2
= 2α+

4

3
βω2 +

6

5
γω4 + . . . , (24)

J (2)(ω)

~2
= 2α+4βω2+6γω4+ . . . . (25)

The bandhead moment of inertia J0 = 2α. Harris

two parameters formula is most popular, ie., J(ω) =

J0 +J1ω
2.

The relation between ω in Harris expansion and

I in Bohr-Mottelson expansion can be derived as fol-

lows:

ω =
1

~

dE

dIx

=
1

~

dE

dξ

dξ

dIx

≈
1

~

dE

dξ
, (26)

so

~ξ =

∫
dE

ω
=

∫
1

ω

dE

dω
dω =

∫
(2α+4βω2 +6γω4+ . . .)dω

= 2αω+
4

3
βω3 +

6

5
γω5 + . . . .

(27)

When K 6= 0 the above equation can be written as

~

√

I(I +1)−K2 = 2αω+
4

3
βω3 +

6

5
γω5 + . . . . (28)

Similarly, formulas ab and abc can be used to ex-

tract the moment of inertia. The result from ab for-

mula is:

J (1)

~2
= J0(1+bξ2)

1

2 ≈ J0

(

1−
~

2ω2

a2b

)

−

1

2

, (29)

J (2)

~2
= J0(1+bξ2)

3

2 ≈ J0

(

1−
~

2ω2

a2b

)

−

3

2

, (30)

Here J0 =
~

2

ab
.

The result from abc formula is:

~
2

J (1)(I)
= ab(1+bξ2)−

1

2 +2c , (31)

~
2

J (2)(I)
= ab(1+bξ2)−

3

2 +2c . (32)

To extract angular frequency ω and type-I mo-

ment of inertia J (1) from experiment, we usually use

~ω(I) =
1

2
Eγ(I +1→ I−1) , (33)

J (1)(I)

~2
=

2I +1

Eγ(I +1→ I−1)
. (34)

in which K is ignored.

Here we will compare the moments of inertia,

which are directly extracted from experiment, with

the calculated ones from abc formula. Fig. 7 gives

an example. It shows that these two results are very

close and this demonstrates the validity of ab and abc

formulas.
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Fig. 7. This figure displays the variation of mo-
ment of inertia of the ground state of 176W and
238U with increasing ω. N is extracted from
experiment and the other is from abc formula.

4.3 Odd-even difference in MOI

The definition of odd-even difference δJ is[17]:

δJ =
J (1)(odd)−J (1)(even)

J (1)(even)
, (35)

odd means odd-even nucleus and even means even-

even ones adjacent.

Figures 8 and 9 give the results.

Fig. 8. The odd-even difference of normally de-
formed band of different single proton quasi-
particle bands.
The legends are the same as Fig. 3. ∗ is the
average of δJ in the same quasiparticle band.
The solid line is the connection of all ∗.

Figure 10 shows, for the ν
7

2
[633] band of 177W and

adjacent even-even nucleus 176W, how type-I MOI

changes while angular frequency ω increases. It is

obvious that δJ gradually decreases with the increas-

ing of ω.

Fig. 9. The odd-even difference of normally de-
formed band of different single neutron quasi-
particle bands.
The legends are the same as Fig. 4. ∗ is the
average of δJ in the same quasiparticle band.
The solid line is the connection of all ∗.

Fig. 10. The change of δJ with the increasing

of ω, for the ν
7

2
[633] band of 177W and the

ground state band of 176W. The abscissa is
the δJ between the two bands.

5 Summary

We have discussed the most popular nuclear rota-

tional band formulas, i.e., Bohr-Mottelson’s I(I +1)-

expansion, Harris’ ω2-expansion, as well as ab and abc

formulas. The relations between their parameters are

investigated, and used to check the validity of the for-

mulas, in which the newest rotational bands of both

even-even and odd-A nuclei are included. Systematic

analyse of newest rare earth and actinide nuclear ro-

tational bands are presented, including the odd-even

difference of moments of inertia of these bands. The

extracted MOIs by ab or abc formula have explained

nuclear odd-even difference satisfactorily.

The authors cordially thank Prof. Jinyan Zeng for

his generous and most helpful discussions.
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