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A study on the distribution of adsorbed nanoparticles *
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Abstract We use Monte Carlo simulation to calculate the distributions of particles under adsorption force

near planar and cylindrical surfaces, respectively. Both hard sphere interaction and repulsive Yukawa (screened

coulomb) interaction are employed in our simulations. We study the influence of the inter-particle potentials.

The difference between the MC simulation results and the analytical results of ideal gas model shows that

the interaction between particles plays an important role in the density distribution under external fields.

Moreover, the 2-dimensional constructions of particles close to the surface are studied and show relations of

the interaction between particles. These results may indicate us how to improve the methods of building

nanoparticle coatings and nano-scale patterns.
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1 Introduction

The adsorption of nanoparticles is a subject of

both scientific interest and practical importance.

There are several interesting phenomena such as lay-

ering and charge inversion which occur in this kind

of systems[1, 2]. In applications, the method of ad-

sorption of nanoparticles is used in creating nano-

scale patterns and nanoparticle coatings to modify

the physical and chemical properties of surfaces[3]. A

well designed nanopatterned surface may exhibit un-

usual capabilities such as super-hydrophobicity and

low friction[4—6]. In our previous work, it has been

proved that the coverage ratio of nano-scale patterns

plays a key role in changing the slip length of solid-

fluid interface[7]. However the thermal motion of

nanoparticles always results in a random distribution.

Techniques to control the final state of adsorption

process may deeply improve the methods to create

nanopatterns. In this paper we find out some factors

which may control the extent of adsorption and the

particle distributions using computer simulations.

From the theoretical point of view, the adsorp-

tion of nanoparticles is a complex process. Gener-

ally speaking, three main factors affect the equilib-

rium distribution of adsorbed nanoparticles, i.e., the

particle-particle interactions, the surface-particle in-

teractions and the entropy. To study the properties

of this kind of systems, computer simulation meth-

ods such as Molecular Dynamics and Monte Carlo

method are the most efficient ones[1, 8]. In this pa-

per we choose the MC method. As for the particle-

particle interactions, we use both hard sphere poten-

tial and repulsive Yukawa potential which is the ma-

jor part of the well known DLVO theory for colloidal

systems[9]. The Van der Waals attraction in DLVO

theory is neglected in our model because of its rel-

atively short interaction range[10, 11]. Various inter-

action strengths and surface geometry are considered

and the simulation results show that they have ob-

vious influences on the extent of adsorption of parti-

cles. We also use the 2-dimensional Dirichlet-Voronoi

constructions to study the geometry properties of the

patterns fabricated by particles adsorbed on surfaces.

2 Models and methods

In simulations, we consider both adsorptive pla-

nar surface and adsorptive cylindrical surface, respec-

tively. In the planar case, all particles making up the

Received 14 March 2007, Revised 3 April 2007

* Supported by 100 Persons Project of Chinese Academy of Sciences, National Natural Science Foundation of China (10474109,
10674146) and Major State Research Development Programme of China (2006CB933000, 2006CB708612)

1)E-mail:hricchaya@163.com

160 — 164



No. 2 LI DingµA study on the distribution of adsorbed nanoparticles 161

system are confined in a L×L×L cubic box. Here

L denotes the side length of the box which is 100σ

in simulation (σ is the diameter of particle). The pe-

riodic boundary conditions are applied in the (x,y)

directions and the reflection boundary condition is

used in the z direction which can be expressed as

Uflat
rc (zi) =

{

∞ zi < 0||zi > L

0 0 6 zi 6 L
, (1)

where zi is the z-coordinate of the ith particle. In

the cylindrical case, particles are confined in a R×L

cylindrical box. R is the radius of the cylindrical sur-

face and L is the length of the box in z axis. In our

simulations R is 10σ and L is 100σ. The periodic

boundary condition is applied in the z direction and

the reflection boundary condition is used in r direc-

tion which is expressed as

U cyl
rc (ri) =

{

∞ ri > R

0 ri 6 R
, (2)

where ri is the r-coordinate of the ith particle which

satisfies r2
i = x2

i +y2
i .

In both cases the total number of particles is 103.

The total energy of the system can be written as

Utotal =
∑

i,i<j

Uhs +
∑

i,i<j

UYu +
∑

i

Uad , (3)

where Uhs is the hard sphere pair potential, UYu is

the repulsive Yukawa pair potential and Uad is the

adsorption potential. The hard sphere potential is

defined as

Uhs(rij) =

{

∞ rij < σ

0 rij > σ
, (4)

where rij is the distance between the ith and the jth

particles which satisfies r2
ij = (xi −xj)

2 +(yi −yj)
2 +

(zi −zj)
2. The repulsive Yukawa potential is defined

as

UYu(rij) =







εσ

rij

exp
[

−kσ
(rij

σ
−1
)]

rij > σ

0 rij < σ

, (5)

where ε is the interaction strength and k is the in-

verse screening length which has a complex relation-

ship with the charge of the particle, the density and

other environmental conditions such as the added salt

concentration[9]. For the adsorption potential, we use

a simple constant force form which is expressed as

Uad(zi) =

{

g(l−zi) zi 6 l

0 zi > l
, (6)

in the planar surface case; and as

Uad(ri) =

{

g(l−ri) ri 6 l

0 ri > l
, (7)

in the cylindrical surface case. Here g is the ad-

sorption force and l denotes the range of the force.

We define a quantity Uw ≡ g • l as the well-depth of

the adsorption potential which describes the poten-

tial strength.

The equilibrium properties of our model system

are obtained by using the standard canonical MC sim-

ulations following the Metropolis scheme[12, 13]. Par-

ticle moves are considered with an acceptance ratio of

30%. In each run of simulations more than 104 MC

steps per particle are performed. Typically, about

103—2× 103 MC steps per particle are required for

equilibration, and about 8×103 subsequent MC steps

are used to accomplish the measurements.

3 Results and discussion

To testify the validity of our method, we first cal-

culate the density profile in z-direction of adsorbed

hard sphere particles. The value of l is set to 10σ

for the planar surface case. The adsorption potential

strength Uw increases from 0.8kBT to 4.0kBT with a

step 0.8kBT , here kB is the Boltzmann constant and

T is the temperature. Figs. 1(a) and (b) show the

evolvement of the energy per particle and the evolve-

ment of the quantity n0 which is defined as the num-

ber of particles situated less than 1σ from the ad-

sorptive surface (in the following parts of the paper

we call this region as the first layer). The value of n0

characterizes the extent of adsorption. In the figures

it is obviously both the energy per particle and the

value of n0 show that the systems get equilibrium af-

ter about 103 MC steps per particle. Fig. 1(c) show

the equilibrium density profiles in z-direction of the

system. To check the results we consider the density

profile of idea gas under the same external fields as

in simulations. It can be expressed as

ρ(z) =



















ρ0 exp

(

−
gz

kBT

)

0 6 z 6 l

ρ0 exp

(

−
gl

kBT

)

l < z 6 L

. (8)

We can find the simulation results in Fig. 1(c) are

analogous to the Eq. (8). To verify it quantification-

ally, we define a characteristic factor b which deter-

mines the density profile within the adsorption force

range l as

b≡
gσ

kBT
, (9)

and then the value of n0 can be calculated analyt-

ically using Eq. (8) with the restriction conditions.

The result is

n0 =
N [1−exp(−bσ)]

1+(Lb− lb−1)exp(−bl)
, (10)
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here N denotes the total number of particles in the system.

Fig. 1. Simulation results for the hard sphere particles in cubic box. (a) shows the evolvement of the mean
energy per particle, (b) shows the evolvement of the value of n0, (c) shows the density profile at the z-direction
where the inset shows the results within l on linear-log coordinates. Here Uw0 =0.8kBT .

We use the simulation data to fit the values of b

and n0 and show the results in Figs. 2(a) and (b),

respectively. In the Figures we find the fitting values

are very close to the predictions of idea gas model.

These results confirm the validity of our method. To

discuss the influence of the adsorption force range,

we study also systems in which l = 1σ. The results

are shown in Fig. 2(c). The values of n0 are also very

close to the results of Eq. (10). This exhibits that the

adsorption force range has no exceptive influences on

the results under our settings.

In the cylindrical surface case, due to the geom-

etry construction, the results are different from the

planar surface case. The density profile of idea gas

has the form as

ρ(r) =



















ρ0 exp

[

−
g(R−r)

kBT

]

R− l 6 r 6 R

ρ0 exp

(

−
gl

kBT

)

0 6 r < R− l

, (11)

and the value of n0 can be computed as

n0 =
2N [Rb−1−(Rb−σb−1)exp(−bσ)]

[(Lb− lb−1)2+1]exp(−bσ)+2(Rb−1)
. (12)

We set l = 1σ here and the simulation results are

shown in Fig. 2(d). They are well fitted to the pre-

diction of Eq. (12).

In the next part, we show the effects of the inter-

action between particles on the density profile in the

z-direction. As discussed before, we use l = 10σ for

planar case and l = 1σ for cylindrical case. The ad-

sorption potential strength Uw is set as 4kBT . The re-

pulsive Yukawa potential has two control parameters:

the interaction strength ε and the inverse screening

length k. To understand fully their effects, we vary

the values of both ε and k respectively in simulations.

With the simulation results we fit the quantity b and

n0 in the planar case and fit the value of n0 only in

cylindrical case.

Fig. 2. The fitting results of hard sphere parti-
cles. Circles present the fitting value of b and
triangles present the fitting value of n0. The
solid curves are the predictions of the ideal gas
model. (a) and (b) are the planar case with
l = 10σ, (c) is the planar case with l =1σ, and
(d) is the cylindrical case with l = 1σ. Other
parameters are the same as in Fig. 1.

The fitting results are shown in Fig. 3. We can see

that the values of n0 and b decrease monotonously

when the value of ε increases or the value of k de-

creases in the planar case as shown in Figs. 3(a) and

(b). But in the cylindrical case, a parabolic-like curve

observed as in Fig. 3(c) shows that when the effec-

tive potential range increases, the extent of adsorp-

tion decreases first and then increases and there is a

minimum near kσ = 1. It is well known that repul-

sive particles tend to disperse in space. In an open

system like the planar case, particles can move away

without limit, so the adsorbed particles have the ten-

dency to push others away from the surface which

can be described as screening effects and it results

in a monotone behavior as shown in figures. But in

the confined system such as the cylindrical case, the

boundary condition limits particles to move within a

finite space which causes an effective force to push

particles onto the surface. This confined effect will

enhance the adsorption of particles. The competition

between the confining effect and the screening effect



No. 2 LI DingµA study on the distribution of adsorbed nanoparticles 163

leads the parabolic-like behavior in Fig. 3(c). We

can predict that the value of n0 may increase when

ε is large enough which is beyond the range of which

shown in Fig. 3(d). Another interesting thing here

is the different effect of ε and k. In principle, both

increasing ε and decreasing k cause stronger effec-

tive potential strength and larger effective potential

range. The difference is that the value of ε determines

mainly its strength and the value of k characterizes

primarily the potential range. As analyzed before,

we know that the confined effect is a volume effect

which exhibits more obviously by decreasing k than

increasing ε.

Fig. 3. Fitting results for the different hard core
Yukawa particles. Triangles are the fitting val-
ues of n0, and circles are the fitting values of b.
(a) and (b) show the results for cubic case, (c)
and (d) show the cylindrical case. ε0 = 4kBT .
kσ = 1 when ε varies in (b), (d) and ε = 4kBT

when kσ varies in (a), (c).

Finally we analyze the geometry properties of the

patterns constructed by the adsorbed particles. Due

to the adsorbed particle random distribution, we com-

pute their Dilichlet-Voronoi polygons[14] as the neigh-

boring region for each particle within the first layer by

the following method. We project the 3-dimensional

position coordinates (as (xi,yi,zi) for the ith parti-

cle) of all particles within the first layer onto the ad-

sorptive surface. This treatment creates a discrete

2-dimensional point set as {Pi|1 6 i 6 n0}. For the

planar case Pi = (xi,yi), and for the cylindrical case

it is

Pi =























(

Rarccos

(

xi
√

x2
i +y2

i

)

,zi

)

yi > 0

(

−Rarccos

(

xi
√

x2
i +y2

i

)

,zi

)

yi < 0

. (13)

Then we construct the Dilichlet-Voronoi polygon for

each point with this 2-dimensional point set. The def-

inition of Dilichlet-Voronoi polygon Ci for the point

Pi ∈{Pi} is shown as below:

Ci =
{

P |∀i6=jdist(Pi,P ) 6 dist(Pj ,P )
}

, (14)

here dist(,) is the distance function, and P denotes all

points on the surface. Fig. 4 shows a typical Dilichlet-

Voronoi diagram generated by a random points set.

The fluctuation of the areas of Dilichlet-Voronoi poly-

gons is considered as a measurement of the regularity

of the particle arrangement within the first layer in

our paper.

Fig. 4. Dilichlet-Voronoi polygons for 10 ran-
dom points. Here periodic boundary condi-
tions are used.

We calculate the mean area of the Dilichlet-

Voronoi polygons and their relative error RE which

are obtained by dividing the standard deviation by

the mean area for each frame at equilibrium state.

The value of RE describes the fluctuation of polygon

areas. The simulation details are the same as those

in the previous part. The results are shown in Fig. 5.

We can find that when the value of ε increases or

the value of k decreases, the relative errors decrease

monotonously in both planar and cylindrical cases.

This means that the distribution of stronger repul-

sive interacting particles is more regular.

In summary, we use computer simulation method

to study the distributions of adsorbed hard core re-

pulsive Yukawa particles in this paper. The extent of

adsorption and the 2-dimensional profile of patterns

constructed by the adsorbed particles in first layer are

calculated. The results show that a stronger repul-

sive strength of the particle-particle interaction will

results in a more regular distribution. For the extent

of adsorption, the confined system gives different re-

sults to the open system.

In real systems, the interactions are far more com-

plex than those modelled in this paper. A more pre-

cise model system may give more detailed results.

However, it does not change the conclusion in this

paper.
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Fig. 5. Mean area and relative error for Dilichlet-Voronoi polygons with different Yukawa potentials. Triangles
are the value of mean area and circles are the value of RE. (a) and (b) show the results of cubic case, (c)
and (d) show the results of cylindrical case. Other parameters are the same as in Fig. 3.
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