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Shell evolution at N =20 in the constrained

relativistic mean field approach *

SUN Bao-Hua(��u)1) LI Jian(oê)

(School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China)

Abstract The shell evolution at N = 20, a disappearing neutron magic number observed experimentally in

very neutron-rich nuclides, is investigated in the constrained relativistic mean field (RMF) theory. The trend

of the shell closure observed experimentally towards the neutron drip-line can be reproduced. The predicted

two-neutron separation energies, neutron shell gap energies and deformation parameters of ground states are

shown as well. These results are compared with the recent Hartree-Fock-Bogliubov (HFB-14) model and the

available experimental data. The perspective towards a better understanding of the shell evolution is discussed.
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1 Introduction

The occurrence of the magic numbers 2, 8, 20, 28,

50, 82 and 126 in the nuclear system at or close to

the valley of stability has been one of the strongest

motivations for the theoretical nuclear mean-field

theories[1]. At these proton or neutron numbers, ef-

fects analogous to electron shell closures in atoms

are observed. In order to reproduce this observed

shell effect, a strong spin-orbit interaction (ls force)

was introduced in the framework of a non-relativistic

nuclear model by referring to the example from the

atomic physics. However, how to incorporate the

isospin dependence of the ls force is still an open prob-

lem such as to describe nuclides close to and far away

from the beta stability simultaneously. On the other

hand, within the relativistic model, the spin-orbit in-

teraction is incorporated automatically in its equa-

tions. The central potential and the ls potential are

inter-related through the scalar and the vector poten-

tials. Therefore, in this aspect the relativistic model

is a more basic model for understanding the ls force

(thus shell closure) as well as its isospin dependence.

However, since all nuclear models were constructed

based on known experimental data near the valley of

stability, it is a great challenge to predict also how

and where the shell closures vary.

Recently, the breakdown of the neutron magic

number N = 20 in the neutron-rich nuclei has been

the subject of intense experimental and theoretical

scrutiny. The precise mass measurements[2] and/or

the observations of low-lying first excited states with

large B(E2) transition probabilities (see, e.g. Ref. [3]

and references therein) confirm a vanishing N = 20

shell gap for isotopes from O to Mg towards the neu-

tron drip-line. Similarly, the traditional shell closures

at N = 8 and 28 have been found to be disappearing

with isospin in various experiments[4, 5], while on the

other hand new shell closures like that atN = 16[4] ap-

pear. This reflects the ordering of the single-particle

levels and thus the shell structure change with isospin.

In the language of shell-model (see e.g., Ref. [6]), the

structural changes around 32Mg can be explained by

the reason that the p-f configurations drop below the

s-d ones. As illustrated in Fig. 1, this region around

N = 20 sometimes is also refereed to as the “island of

inversion”.

The main purpose of this investigation is to ex-

plore the shell evolution towards the neutron drip-line

in the framework of the relativistic mean field (RMF)

approach by taking the N = 20 isotonic chain as an

example, and to find the discrepancy between the
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theoretical predictions and the experimental results.

In Section 2 a brief summary of the constrained RMF

theory is given. In Section 3 the results are presented

together with the comparisons with the experimental

data and the predictions of the recent Hartree-Fock-

Bogliubov (HFB-14) model[7]. Finally, the summary

is given in the last section.

2 Constrained relativistic mean field

approach

In the RMF approach, the nucleons interact via

the exchange of mesons (σ, ω and ρ) and photons.

The corresponding large scalar and vector fields, of

the order of a few hundred MeV, provide simple and

efficient descriptions of several important phenomena

like the spin-orbital interaction and the pseudospin

symmetry (for a recent review, see Refs. [8—12]).

The standard effective Lagrangian density of the

RMF theory is constructed with the degrees of free-

dom associated with the nucleon field ψ, two isoscalar

meson fields σ and ω, the isovector meson field ρ, and

the photon field A:

L = ψ [iγµ∂µ−M ]ψ−ψ
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where all the symbols have the same meaning as in

Ref. [13]. The corresponding Dirac equation for nu-

cleons and Klein-Gordon equations for mesons ob-

tained with the mean field approximation are solved

by the expansion method in the widely used axially

deformed Harmonic-Oscillator basis[12, 14]. The equa-

tion of motion for the photon field is solved using

the standard Green’s function method due to its long

range. The number of shells used for expansion is

chosen as Nf = Nb = 14. The parameter set PK1[13]

is used throughout the calculation. Contrary to a

widely used phenomenological center-of-mass correc-

tion such as−
3

4
41A−1/3, the center-of-mass correction

is taken into account microscopically by

Emic
cm =

1

2mA
〈p2

cm〉, (2)

where pc.m. is the total momentum of a nucleus with

A nucleons.

The pairing energy is calculated via the BCS

method, where the proton and neutron pairing

strengths G are optimized for each isotopic chain from

Ne to Ti by fitting the experimental odd-even mass

differences (four-point formula). Furthermore, in or-

der to obtain the potential energy surfaces (PESs)

and determine the corresponding deformation pa-

rameters of ground-states, quadrupole constrained

calculations[1, 15] have been performed for all the nu-

clei investigated in this work.

3 Results and discussion

In the present work, all the even-even nuclides for

elements from Ne to Ti with neutron number 18, 20

and 22 have been investigated in the RMF approach.

These nuclides are illustrated in Fig. 1.

Fig. 1. Chart of nuclides around the island of
inversion. Stable nuclei are shown in black
squares. Magic proton and neutron numbers
at Z = 20 and N = 20 are indicated by pairs of
parallel lines. Even-even nuclides investigated
in this work are in the region of the square
marked by dashed lines. The island of inver-
sion taken from Ref. [6] is shown as a grey
area.

The two-neutron separation energy S2n of nuclide

(Z,N) is defined as

S2n(Z,N) = M(Z,N−2)+2Mn−M(Z,N) =

EB(Z,N−2)−EB(Z,N) , (3)

where Mn, M(Z,N) and EB(Z,N), respectively, are

the neutron mass, the nuclear mass and the binding

energy for a nucleus (Z,N). It corresponds to the

energy required to remove a pair of neutrons from a

nucleus. As the first derivative of binding energies,

two-neutron separation energies indicate the evolu-

tion of the binding energy with isospin. For an iso-

tonic chain, the S2n are getting steadily smaller with
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the proton number Z. In Fig. 2, two-neutron sepa-

ration energies from the experimental data[2] and the

predictions of the RMF model for the isotonic chain

with N = 18—24, are plotted as a function of pro-

ton number Z. Compared with the RMF calculation,

the experimental results show kinks at nuclides with

Z = N due to the “so-called” Wigner effect. Since

so far the Wiger effect has not been taken into ac-

count in the RMF approach, a much smooth relation

of S2n versus Z is observed. The RMF reproduces

well the experimental values at the N = 22 and 24

chains, however, systematically overestimates the ex-

perimental results by about 2 MeV for the N = 20

chain with Z = 10—20.

Fig. 2. Two-neutron separation energies (S2n)
for isotonic chains N = 18—22 as a function
of proton number Z. The experimental data
(upper panel) are taken from Ref. [2] and the
theoretical results are calculated in the RMF
approach.

The derivative of the two-nucleon separation en-

ergies, namely the shell gap energy defined as

∆n(Z,N0) = M(Z,N+2)−2M(Z,N)+

M(Z,N+2) =

S2n(Z,N0)−S2n(Z,N0 +2) , (4)

is characterized by the vertical distance between two

consecutive isotones. It is widely used to extract the

shell strength from nuclear masses. The shell gap en-

ergy at N = 20 is plotted in Fig. 3 as a function of

Z for the RMF predictions together with the exper-

imental data[2] and the HFB-14[7] results. It is clear

that both the theoretical calculations and the experi-

mental data show the decline for the N = 20 shell gap

approaching the drip-line. For the experimental data,

the shell gap energies change from about 9 MeV at

the double-magic nuclides 40Ca to about 2.3 MeV at

nuclides 30Ne. The shell gap energy calculated in the

RMF is about 2 MeV larger than the corresponding

experimental value for the nuclides with Z =10—18,

and is about 1 MeV larger for 40Ca. This is due to

the predicted spherical ground state for nuclides with

N = 20 in the RMF approach as shown in Fig. 4.

The HFB-14 calculation shows a relatively better re-

productive power for the shell gap, however, overes-

timates the shell quenching effect from 34Si to 32Mg

by more than 3.5 MeV.

Fig. 3. Comparisons between the calculated
neutron shell gaps at N = 20 in the RMF

(open circles) and HFB-14
[7]

(open triangle)

models with the experimental values
[16]

(filled
circles).

Fig. 4. The quadrupole deformation parame-
ters β2 of N = 18 (upper panel), 20 (middle
panel) and 22 (lower panel) isotones as a func-
tion of proton number Z. The results from
the RMF calculations (open circle) are com-

pared with the experimental data
[16]

(filled
circle) and those calculated from the HFB-14

model
[7]

(open triangle).

Experimental information[3, 16, 17] shows that the

weakening of the N = 20 shell is related to the appear-

ance of a deformed ground state. The corresponding

deformation parameters obtained in the RMF and

HFB-14 models are presented for isotonic chains with

N = 18, 20 and 22 in Fig. 4. The available experimen-

tal data[16] are extracted from the B(E2 : 0+ → 2+).

The RMF predictions are in very good agreement

with the HFB-14 predictions for the N = 18 and 20
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chains. The only difference for the N = 18 chain is the

ground state configuration for 40Ti. In the HFB-14

model, a small prolate deformation β2 = 0.1 is pre-

dicted. However, in our calculation the ground state

is assigned to an oblate configuration with β2 =−0.2,

while a second minimum of the energy surface with an

excitation energy of 0.55 MeV is at a soft deformation

of β2 ≈ 0.1. As for the N = 20 chain, both calcula-

tions fail to give the deformation of the ground state

for 30Ne[17] and 32Mg[16]. In fact, this is a common

problem of mean field theories as demonstrated also

by the HFB-14 model. For this the angular momen-

tum projection method[1, 11] can be introduced to re-

store the broken rotational symmetry. Furthermore,

it has been demonstrated recently in Ref. [18] that the

mean field picture of those nuclei is strongly modified

by the projection. On the other hand, a relatively

good reproductive power of the shell gap in the HFB-

14 model probably is related to its global mass fit to

all the known nuclear masses, thus some other effects

compensate the effect due to wrongly assigned shapes

of ground states. This is also a strong motivation

for searching a Lagrangian parameter set suitable for

the entire nuclear chart in the RMF approach, and

this new parameter set is expected to incorporate the

isospin dependence of e.g. pairing and shell closure.

Different from the agreement in predicting the

ground state configurations for the N = 18 and 20

chains, the HFB-14 and RMF models assign quite

different shapes for the N = 22 chain. From Z = 20

to Z = 12, a steadily increasing prolate deformation

is predicted in the HFB-14 model, while a spherical

shape is predicted in the RMF calculations. It is in-

teresting to see whether the RMF theory can give the

prolate shape as in the HFB-14. Fig. 5 presents the

potential energy surface of 34Mg as a function of the

deformation parameter β2. In the RMF approach,

the ground state is spherical. The second minimum

of the energy surface at β2 = 0.3 is clearly seen and

has an excitation energy of only 0.07 MeV, which may

indicate a large probability of the shape coexistence

for 34Mg. Further investigations on the flat energy

surface need to go beyond the mean field theory.

Fig. 5. The potential energy surfaces of 34Mg
as a function of the deformation parameter β2.
Two local minima have been marked.

4 Summary

In the present work, the RMF approach has been

adopted to study the shell evolution towards the

neutron drip-line at N = 20. For each nuclide in-

vestigated, the quadrupole constrained calculations

have been performed to obtain the ground state. It

turned out that our calculation can reproduce the

trend of the shell evolution towards the neutron drip-

line, however, shows systematically larger shell gap

energies by about 2 MeV compared with the experi-

mental data. For a better understanding of the shell

evolution, one needs to go beyond the mean field

theory, e.g., introducing the angular momentum pro-

jection method.

The authors are indebted to Prof. Meng Jie for

his valuable suggestions and critical review.
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