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Double folding model calculation applied to

fusion reactions *
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Abstract The interaction potential between a spherical and a deformed nucleus is calculated within the

double-folding model for deformed nuclei. We solve the double folding potential numerically by using the

truncated multipole expansion method. The shape, separation and orientation dependence of the interaction

potential, fusion cross section and barrier distribution of the system 16O+154Sm are investigated by considering

the quadrupole and hexadecapole deformations of 154Sm. It is shown that the height and the position of the

barrier depend strongly on the deformation and the orientation angles of the deformed nucleus. These are

quite important quantities for heavy-ion fusion reactions, and hence produce great effects on the fusion cross

section and barrier distribution.
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1 Introduction

Heavy-ion fusion reactions involving deformed nu-

clei are an important topic of research in nuclear

physics[1, 2]. Recently, particular interest has been

paid to the effects of nuclear deformation on the pro-

duction and decay of superheavy nuclei. This is be-

cause reasonable predictions of production cross sec-

tions and α-decay half-lives of superheavy nuclei re-

quire the knowledge of the nuclear potentials. The

nuclear potentials between deformed interacting nu-

clei are essentially important in describing these reac-

tions and decay processes. Therefore, fusion reactions

between heavy nuclei with static and dynamic defor-

mations have re-attracted much attention up to date.

It is also important to explore the situation where one

of the interacting pair of nuclei is spherical and the

other one deformed.

The double folding model is commonly used to

calculate the optical potential in elastic scattering[3].

If it is used for the calculation of the interaction po-

tential in a fusion reaction, the barrier height and po-

sition can be obtained. Then the fusion cross section

and barrier distribution can easily be obtained. The

basic input into the folding calculation is the nuclear

density of both of the colliding nuclei. The folding of

two spherically symmetric distributions can easily be

calculated by using the double folding model. How-

ever, if one or both of the nuclei have a deformed den-

sity distribution, it is much more difficult to simplify

the six-dimensional integral and reduce it to fewer

dimensions. In this case, one usually simplifies the

folding model by using the truncated multipole ex-

pansion method[4]. In this letter, we limit ourselves

to the interaction potentials between a deformed tar-

get and a spherical projectile (see Fig. 1). The double

folding potentials are calculated numerically by using

the above mentioned method. We consider an axially

symmetric shape for the multipole expansion of the

target nuclear distribution. The system 16O+154Sm

is chosen to study the deformation and orientation

dependence of the interaction potentials, fusion cross

sections and barrier distribution within the double

folding model. Both quadrupole and hexadecapole

deformations are included for the 154Sm nucleus.
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2 The interaction between a spherical

and a deformed nucleus in the dou-

ble folding model

In the double folding model the nuclear potential

is calculated as

VN(r) =

∫∫
ρP(r1)v

(

s = |R+r2−r1|
)

ρT(r2)dr1dr2,

(1)

where v is the NN interaction between two nucleons.

ρP(r1) and ρT(r2) are the matter density distributions

of the projectile (P) and target (T) nuclear ground

states, normalized as:∫
ρi(ri)dri = Ai. (2)

The vector s = R+r2−r1 corresponds to the distance

between two specified interacting points of the pro-

jectile and target, whose radius vectors are r1 and

r2, respectively. R denotes the vector between the

center of mass of the two nuclei. θ is the relative ori-

entation angle of the target nucleus symmetry axis

measured with respect to the separation vector R.

This geometry is illustrated in Fig. 1.

Fig. 1. The coordinate system used in the dou-

ble folding model.

The densities of deformed nuclei have the form

ρ(r,θ) =
ρ0

1+exp[(r−R(θ))/a]
, (3)

where R(θ) is the half density radius

R(θ) = R0[1+β2Y20(θ)+β4Y40(θ)]. (4)

The multipole expansion of the deformed nuclear den-

sity distribution for an axially symmetric shape, lim-

iting the deformations to quadrupole and hexade-

capole cases, has the form

ρ(r,θ) =
∑

l=0,2,4

ρl(r)Yl0(θ). (5)

As NN interaction we used the well-known M3Y-Reid

zero-range interaction[5]. The multipole components

of the intrinsic form factor are given by[6]

ρ̃(l)
T (k) =

∫ rmax

0

drr2ρl(r)jl(kr). (6)

The double folding potential is obtained by the sum-

mation over the different multipole components[7].

VN(R,θ) =
∑

l=0,2,4

V l
N(R,θ), (7)

with[8]

V l
N(R,θ) =

2

π

[

2l+1

4π

]1/2 ∫ kmax

0

dkk2jl(kR)×

ρ̃P(k)ρ̃(l)
T (k)ṽ(k)Pl(cosθ), (8)

where ρ̃P(k) and ṽ(k) are the Fourier transforms of

the density distribution of the spherical projectile

and the M3Y-Reid zero-range NN interaction, respec-

tively.

The Coulomb potential is calculated with[9]

VC(R) = 2πe2

∫
∞

0

j0(kR)ρ̂P(k)ρ̂T(k)dk, (9)

where ρ̂P(k) and ρ̂T(k) are the Fourier transforms of

the spherically symmetric charge densities of projec-

tile and target.

3 The system 16O+154Sm

The system 16O+154Sm is chosen to calculate

the nuclear and Coulomb potentials. We use elec-

tron scattering data for 16O and 154Sm[10]. A

two-parameter Fermi shape is used for 16O with

R0=2.6 fm and a=0.45 fm,

ρP(r) =
ρ0

1+exp((r−R0)/a)
. (10)

For 154Sm, β2=0.311, β4=0.087, R0=5.9387 fm and

a=0.5223 fm is used[11]. The density distributions

obtained by using the multipole expansion method

for l=0, 2, 4 are shown in Fig. 2.

Using the above formula, the interaction poten-

tials between 16O and 154Sm are shown for the ori-

entation angles θ = 0◦ and θ = 90◦ in Fig. 3. We

see that the barrier height is much lower at θ = 0◦

than at θ=90◦. This is so because there is a larger

overlap at θ=0◦ and the nuclear potential for θ=0◦ is

much more attractive than that for θ=90◦. Simulta-

neously we evaluate the barrier heights and positions

of the system without deformation and for hexade-

capole deformations with β4=0 and β4=0.087 for the

target nucleus 154Sm at different orientation angles.

The results are shown in Fig. 4. One can see that

the barrier heights and positions change with the ori-

entation angles and deformations of the target nu-

cleus. The barrier heights increase and the barrier

positions decrease with increasing orientation angles.

Fig. 4 shows also the influence of different values of

the hexadecapole deformations on the behaviour of

the barrier heights and positions.
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Fig. 2. The radial density distributions for
154Sm at l=0, 2, 4.

Fig. 3. The interaction potentials of the system
16O+154Sm at the orientation angles θ=0◦

and θ=90◦.

Fig. 4. The barrier heights and positions of the interaction potentials of the system 16O+154Sm for β4=0,

β4=0.087 and no deformation, respectively.

Fig. 5. The fusion cross section of the system
16O+154Sm for β4=0, β4=0.087 and no de-

formation in comparison with experimental

data
[1]

, respectively.

Using Wong’s formula[12], we calculate the fusion

cross section of the system 16O+154Sm.

σf(θ) =
~ωR2

B(θ)

2Ec.m.

ln

[

1+exp

(

2π

~ω
(Ec.m.−VB(θ))

)]

.

(11)

The total fusion cross section is then given by

σf =
1

4π

∫
σf(θ)2πsin(θ)dθ. (12)

In Fig. 5 we compare our calculations for 154Sm with

the experimental data[1]. The calculations have been

done for spherical and deformed 154Sm with β4=0 and

0.087, respectively. One can see that the integrated

fusion cross sections are in rather good agreement

with the experimental data, especially at energies

around and below the Coulomb barrier, which was the

main interest in nuclear physics in the past decades.

The fusion cross sections for β4=0.087 are larger than

those for β4=0. It can be seen that a positive hexade-

capole deformation increases the fusion cross section

relative to that one where only quadrupole deforma-

tions have been taken into account. The fusion cross

sections around and below the Coulomb barrier are

much smaller than the experimental data if the target

nucleus 154Sm is treated as undeformed, indicating

that the deformation of the target nucleus strongly

affects the fusion cross section.
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Once the fusion cross section has been calculated,

also the barrier distribution can be obtained. The ac-

tual distribution of probabilities for finding a fusion

barrier at a given center-of-mass energy Ec.m. can be

directly extracted from the fusion cross sections σf by

a twofold differentiation of Ec.m.σ with respect to the

energy:

D(Ec.m.) =
d2(Ec.m.σ)

dE2
c.m.

. (13)

The barrier distribution of the system 16O+154Sm

is shown in Fig. 6, where the target nucleus 154Sm

has been treated as spherical and deformed with a

hexadecapole parameter β4=0 and 0.087. The ex-

perimental data are from Ref. [13]. From Fig. 6 we

find that for the case of no deformation of the target

nucleus, the barrier height increases very sharp and

the shape of the distribution is very different from

the experimental data. However, including the defor-

mation of the target nucleus improves the agreement

with the experimental data, especially at low ener-

gies. It indicates that the deformation of the target

Fig. 6. The barrier distribution of the system
16O+154Sm for β4=0, β4=0.087 and no de-

formation in comparison with experimental

data
[13]

.

nucleus has a large effect on the barrier distribution.

In particular it can be seen from Fig. 6 that the bar-

rier distribution for the case with β4=0.087 gives a

better agreement with the experimental data than

that for β4=0. It is evident that the inclusion of

the hexadecapole deformation can improve the bar-

rier distribution as compared with the case of a pure

quadrupole deformation.

In summary, we have applied the double folding

model to a pair of nuclei, one deformed, the other

spherical. The double folding potentials are obtained

numerically by using the truncated multipole expan-

sion method. The system 16O+154Sm was chosen tak-

ing the quadrupole and hexadecapole deformations

of 154Sm into account. The interaction potentials of

the system were calculated at the orientation angles

θ=0◦ and θ=90◦. The barrier heights and positions

have been obtained for cases with β4=0, 0.087 and

the undeformed target nucleus at different orienta-

tion angles. It was shown that the barrier height and

position depend strongly on the orientation angles

and deformations. Therefore they have also a large

effect on the fusion cross section, especially at ener-

gies around and below the Coulomb barrier, and they

also have a large influence on the barrier distribution.

The integrated fusion cross sections agree well with

the experimental data and also the barrier distri-

bution reproduces the experimental data quite well.

The results of the present work should be meaningful

in studies of heavy-ion fusion reactions, where the

deformation of the nuclei plays an important role. It

is well suited to allow us to reliably explore heavy-

ion fusion reactions, especially for sub-barrier fusion

processes.
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