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Abstract In this paper we calculate the weak form factors of the decays B(Bc) → Dlν̃ by using the chiral

current correlator within the framework of the QCD light-cone sum rules (LCSR). The expressions of the form

factors only depend on the leading twist distribution amplitude (DA) of the D meson. Three models of the D-

meson distribution amplitude are employed and the calculated form factors,FB→D(0) and FBc→D(0) are given.

In the velocity transfer region 1.14 < y < 1.59, which renders the Operator Product Expansion (OPE) near

light-cone x2 = 0 to go effectively, the yielding behavior of form factor is in agreement with that extracted from

the data on B → Dlν̃, within the error. In the large recoil region 1.35 < y < 1.59, the form factor FB→D(0) is

observed consistent with that of perturbative QCD (pQCD). The presented calculation can play a bridge role

connecting those from the lattice QCD, heavy quark symmetry and pQCD to have an all-around understanding

of B → Dlν̃ transitions. Our prediction for FBc→D(0), by using the D-meson distribution amplitude with the

exponential suppression at the end points, is compatible with other approaches, and favors the three-points

sum rules (3PSR) approach with the Coulumb corrections.
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1 Introduction

Calculation of the form factors for semileptonic

transitions of B mesons has been being a subject dis-

cussed intensely. Recently, it has been shown that the

B→π transition form factor can be consistently ana-

lyzed by using the different approaches in the differ-

ent q2 regions
[1—4]

. The perturbative QCD (pQCD)

can be applied to the B→ π form factor in the large

recoil (small q2) region and it is reliable when the

involved energy scale is large enough
[1]

. The QCD

light-cone sum rules (LCSR) can involve both the

hard and soft contributions to the B→π form factor

below q2 ' 18GeV2[2]
. The lattice QCD simulations

of the B → π transition form factor
[3]

are available

only for the soft region q2 > 15GeV2, because of the

restriction to the π energy smaller than the inverse

lattice spacing. Thus the results from these three ap-

proaches might be complementary to each other. In

Ref. [4] we recalculate the B → π form factor in the

pQCD approach, with the transverse momentum de-

pendence included for both the hard scattering part

and the nonperturbative wave functions(of π and B)

to get a more reliable pQCD result. By combining

the results from these three methods we obtain a full

understanding of the B→π transition form factor in

its physical region 0 6 q2 6 (MB−Mπ)2 ' 25GeV2.

It is necessary that there is a reliable estimate of

B→D transition in the whole kinematically accessi-

ble range 0 6 q2 6 (MB−MD)2 ' 11.6GeV2, in order

to account for the data on B→Dlν̃. For this purpose,

it is practical, as shown in B→π case, to combine
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the result of QCD LCSR with those from the lattice

QCD, heavy quark symmetry and pQCD. The LCSR

approach
[2]

, where the non-perturbative dynamics are

effectively parameterized in the so-called light-cone

wave functions, is regarded as an effective tool to

deal with the heavy-to-light exclusive processes. Al-

though the B→D transition in question is a heavy-

to-heavy one, the c-quark is much lighter compared

to b-quark and so discussing it with LCSR is plau-

sible for the kinematical range where the OPE near

light-cone x2 = 0 is valid. The other problem with

our practical calculation is that the higher twist DA’s

of D meson, which are important but less studied,

would enter into the sum rule result. However, an

effective approach
[2]

has been presented to avoid the

pollution by some higher-twist DA’s. This improved

LSCR method uses a certain chiral current correlator

as the starting point so that the relevant twist-3 wave

functions make no contributions and the reliability of

calculation can be enhanced to a large extent. Its

applicability has been examined by a great deal of

studies
[2]

. In this paper we would like to employ the

improved LCSR to discuss the form factor for the

B→D transition and try to give a full understanding

of QCD dynamics involved in the B→Dlν̃.

The CDF Collaboration reported on the obser-

vation of the bottom-charm Bc meson at Fermilab
[5]

in the semileptonic decay mode Bc → J/ψ+ l + ν

with the J/ψ decaying into muon pairs in 1998. Val-

ues for the mass and the lifetime of the Bc me-

son were given as M(Bc) = 6.40± 0.39 ± 0.13GeV

and τ(Bc) = 0.46+0.18
−0.16(stat) ± 0.03(syst) ps. Re-

cently, CDF reported the first Run II evidence for

the Bc meson in the fully reconstructed decay chan-

nel Bc → J/ψ + π with J/ψ → µ+µ−[6]
. The

mass value quoted for this decay channel is 6.2857±
0.0053(stat) ± 0.0012(syst)GeV with errors signifi-

cantly smaller than in the first measurement. Also

D0 has observed the Bc in the semileptonic mode

Bc → J/ψ + µ + X and reported preliminary evi-

dence that M(Bc) = 5.95+0.14
−0.13±0.34GeV and τ(Bc) =

0.45+0.12
−0.10±0.12ps

[7]
.

The Bc decays, at first, calculated in the poten-

tial models (PM)
[8, 9]

, wherein the variation of tech-

niques results in close estimates after the adjustment

on the semileptonic decays of B mesons. The Oper-

ator Product Expansion (OPE) evaluation of inclu-

sive decays gave the lifetime and widths
[10]

, which

agree well with PM, if one sums up the dominating

exclusive modes. That was quite unexpected, when

the sum rules (SR) of QCD results in the semilep-

tonic Bc widths
[11]

, which are one order of magnitude

less than those of PM and OPE. The reason may be

the valuable role of Coulomb corrections, that implies

the summation of αs/v corrections significant in the

heavy quarkonia, i.e. in the Bc
[12]

.

In the recent paper
[13]

, we calculate the form fac-

tor for B→Dlν̃ transitions within the framework of

QCD light-cone sum rules (LCSR). In the velocity

transfer region 1.14< v •v′ < 1.59, which renders the

OPE near light-cone x2 = 0 to go effectively, the yield-

ing behavior of form factor is in agreement with that

extracted from the data on B → Dlν̃, within the er-

ror. In the larger recoil region 1.35<v •v′< 1.59, the

results are observed consistent with those of perturba-

tive QCD (pQCD). Now we calculate the form factor

of Bc→Dlν̃, which also depends on the D-meson DA.

However, due to the different feature of the two pro-

cesses, the c quark is a spectator in the decay Bc→Dlν̃

and the c quark comes from the b quark decay in the

process B→Dlν̃, these two form factors are sensitive

to the shape of the DA in two different regions. Com-

bining the information in the two processes, we can

find which model is more suitable for describing the

D meson. Similar to the case of B→ πlν̃, the LCSR

approach for the Bc →Dlν̃ form factor is reliable only

in the region 0<q2< 15GeV2. we extrapolate the re-

sult to the whole region and give the decay width and

branching ratio for the semileptonic decay
[14]

.

This paper is organized as follows. In the follow-

ing section we derive the LCSRs for the form factor

of Bc → Dlν̃ and Bc → Dlν̃. A discussion of the DA

models for the D meson is given in Section 3. Section

4 is devoted to the numerical analysis and comparison

with other approaches. The last section is reserved for

summary.
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2 LCSRs for the B(Bc) → D form fac-

tors

The Bc → D weak form factors f(q2) and f̃(q2)

are usually defined as:

〈D(p)|ūγµb|Bc(p+q)〉= 2f(q2)pµ + f̃(q2)qµ, (1)

with q being the momentum transfer.

To achieve a LCSR estimate of f(q2), we follow

Ref. [2] and use the following chiral current correla-

tor Πµ(p,q):

Πµ(p,q) = i

∫
d4xeipx〈D(p)|T{ū(x)γµ(1+γ5)×

b(x), b̄(0)i(1+γ5)c(0)}|0〉=

Π(q2,(p+q)2)pµ +Π̃(q2,(p+q)2)qµ, (2)

First, we express the hadronic representation for

the correlator. This can be done by inserting the

complete intermediate states with the same quantum

numbers as the current operator b̄i(1+γ5)c. Isolating

the pole contribution due to the lowest pseudoscalar

Bc meson, we have the hadronic representation in the

following:

ΠH
µ (p,q) = ΠH(q2,(p+q)2)pµ +Π̃H(q2,(p+q)2)qµ =

〈D|ūγµb|Bc〉〈Bc|b̄iγ5c|0〉
m2

Bc
−(p+q)2

+

∑

H

〈D|ūγµ(1+γ5)b|BH
c 〉〈BH

c |b̄i(1+γ5)c|0〉
m2

BH
c

−(p+q)2
. (3)

Note that the intermediate states BH
c contain not only

the pseudoscalar resonance of masses greater than

mBc
, but also the scalar resonances with JP = 0+,

corresponding to the operator b̄c. With Eq. (1) and

the definition of the decay constant fBc
of the Bc me-

son

〈Bc|b̄iγ5c|0〉=m2
Bc
fBc

/(mb+mc), (4)

and expressing the contributions of higher resonances

and continuum states in a form of dispersion integra-

tion, the invariant amplitudes ΠH and Π̃H read,

ΠH[q2,(p+q)2] =
2f(q2)m2

Bc
fBc

(mb +mc)(m2
Bc

−(p+q)2)
+

∫
∞

s0

ρH(s)

s−(p+q)2
ds+subtractions,

(5)

and

Π̃H[q2,(p+q)2] =
f̃(q2)m2

Bc
fBc

(mb +mc)(m2
Bc

−(p+q)2)
+

∫
∞

s0

ρ̃H(s)

s−(p+q)2
ds+subtractions,

(6)

where the threshold parameter s0 should be set near

the squared mass of the lowest scalar Bc meson, the

spectral densities ρH(s) and ρ̃H(s) can be approxi-

mated by invoking the quark-hadron duality ansatz

ρH(s)(ρ̃H(s)) = ρQCD(s)(ρ̃QCD(s))θ(s−s0). (7)

On the other hand, we need to calculate the cor-

relator in QCD theory to obtain the desired sum rule

result. In fact, there is an effective kinematical region

which makes OPE applicable: (p+q)2−m2
b�0 for the

bd̄ channel and q26m2
b−2ΛQCDmb for the momentum

transfer. For the present purpose, it is sufficient to

consider the invariant amplitude Π(q2,(p+q)2) which

contains the desired form factor. The leading con-

tribution is derived easily by contracting the b-quark

operators to a free propagator:

〈0|Tb(x)b̄(0)|0〉=

∫
d4k

(2π)4
e−ikx 6k+mb

k2−m2
b

. (8)

Substituting Eq. (8) into Eq. (2), we have the two-

particle contribution to the correlator,

Π(q̄q)
µ = −2mbi

∫
d4xd4k

(2π)4
ei(q−k)x 1

k2−m2
b

×

〈D(p)|T c̄(x)γµγ5d(0)|0〉. (9)

An important observation, as in Ref. [2], is

that only the leading non-local matrix ele-

ment 〈D(p)|ū(x)γµγ5c(0)|0〉 contributions to the

correlator, while the nonlocal matrix elements

〈D(p)|ū(x)iγ5c(0)|0〉 and 〈D(p)|ū(x)σµνγ5c(0)|0〉
whose leading terms are of twist 3, disappear from

the sum rule. Proceeding to Eq. (9), we can expand

the nonlocal matrix element 〈D(p)|T ū(x)γµγ5c(0)|0〉
as

〈D(p)|T ū(x)γµγ5c(0)|0〉=

−ipµfD

∫1

0

dueiupxϕD(ū)+higher twist terms, (10)

where ϕD(ū) is the twist-2 DA of the D meson with

ū = 1 − u being the longitudinal momentum frac-

tion carried by the c quark, those DA’s entering the
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higher-twist terms are of at least twist 4. The use of

Eq. (10) yields

Π(q̄q)[q2,(p+q)2] = 2fDmb

∫1

0

du
ϕD(ū)

m2
b−(up+q)2

+

higher twist terms. (11)

Invoking a correction term due to the interac-

tion of the b quark with a background field gluon

into Eq. (11), the three-particle contribution Π(q̄qg)
µ is

achievable. However, the practical calculation shows

that the corresponding matrix element whose leading

term is of twist 3 also vanishes. Thus, if we work to

the twist-3 accuracy, only the leading twist DA ϕD is

needed to yield a LCSR prediction.

Furthermore, we carry out the subtraction pro-

cedure of the continuum spectrum, make the Borel

transformations with respect to (p + q)2 in the

hadronic and the QCD expressions, and then equate

them. Finally, we get the LCSR for f(q2):

fBc→D(q2) =
mb(mb +mc)fD

m2
Bc
fBc

em2

Bc
/M2×

∫1

∆Bc

du

u
exp

[

−m
2
b−(1−u)(q2−um2

D)

uM 2

]

ϕD(ū), (12)

where

∆Bc
=

√

(sBc

0 −q2−m2
D)2 +4m2

D(m2
b−q2)−(sBc

0 −q2−m2
D)

2m2
D

,

(13)

and p2 =m2
D has been used.

The LCSR for the form factor of B → Dlν̃ has

been derived in Ref. [13], here we just give the result:

FB→D(v ·v′) =
2m2

b

(mB +mD)mB

√

mD

mB

fD

fB

em2

B
/M2×

∫1

∆B

du

u
exp

[

−m
2
b−(1−u)(q2−um2

D)

uM 2

]

ϕD(u), (14)

where

∆B =
√

(sB0 −q2−m2
D)2 +4m2

D(m2
b−q2)−(sB0 −q2−m2

D)

2m2
D

.

(15)

3 D-meson distribution amplitude

Now let’s discuss an important nonperturbative

parameter appearing in the LCSRs, the leading twist

DA of D-meson, ϕD(x). We reexamine the D-meson

distribution amplitude since we missed a factor of
√

2

for the decay constant fD in determining the coeffi-

cients of the DA model
[13]

.

The D meson is composed of the heavy quark

c and the light anti-quark q̄. The longitudinal mo-

mentum distribution should be asymmetry and the

peak of the distribution should be approximately at

x ' mc/mD ' 0.7. According to the definition in

Eq. (10), ϕD(x) satisfies the normalization condition
∫1

0

dxϕD(x) = 1. (16)

In the pQCD calculations
[15]

, a simple model (we

call model I) is adopted as

ϕ(I)
D (x) = 6x(1−x)(1−Cd(1−2x)) (17)

which is based on the expansion of the Gegenbauer

polynomials. Eq. (17) has a free parameter Cd which

ranges from 0 to 1, and is supposed to approx-

imate 0.7 in order to get consistent results with

experiments
[15]

. Thus we simply take Cd = 0.7.

On the other hand, it was suggested in Ref. [16]

that the light-cone wave function of the D-meson be

taken as:

ψD(x,k⊥) =AD exp

[

−b2D
(

k
2
⊥

+m2
c

x
+

k
2
⊥

+m2
d

1−x

)]

(18)

which is derived from the Brosky-Huang-Lepage

(BHL) prescription
[17]

. One constraint on the wave

function is from the leptonic decay process D→µν:
∫1

0

∫
d2

k⊥

16π3
ψD(x,k⊥) = fD/2

√
6. (19)

Here the conventional definition of the decay constant

fD has been used, so Eq. (19) differs from that in

Ref. [16] by a factor of
√

2. Another constraint comes

from an estimation of the probability of finding the

|qq̄〉 Fock state in the D meson:

PD =

∫1

0

dx

∫
d2

k⊥

16π3
|ψD(x,k⊥)|2. (20)

As discussed in Ref. [16], PD ≈ 0.8 is a good approx-

imation for the D meson. Based on these two con-

straints, the parameters AD and b2D can be fixed. Tak-

ing PD ≈ 0.8, fD = 222.6MeV, mc = 1.3GeV and md =

0.35GeV, we have AD = 225GeV−1, b2D = 0.580GeV−2.
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ψD(x,k⊥) can be related to the normalized DA ϕD(x)

by the definition:

ϕD(x) =
2
√

6

fD

∫
d2

k⊥

16π3
ψD(x,k⊥). (21)

Substituting Eq. (18) into Eq. (21), we have a model

of the DA(model II)

ϕ(II)
D (x)=

√
6AD

8π2fDb2D
x(1−x)exp

[

−b2D
xm2

d +(1−x)m2
c

x(1−x)

]

,

(22)

Furthermore, as argued in Ref. [18], a more com-

plete form of the light-cone wave function should in-

clude the Melosh rotation effect in spin space:

ψf
D(x,k⊥) =χD(x,k⊥)Af

D×

exp

[

−bf
D

2

(

k
2
⊥

+m2
c

x
+

k
2
⊥

+m2
d

1−x

)]

(23)

with the Melosh factor,

χD(x,k⊥) =
(1−x)mc +xmd

√

k2
⊥

+((1−x)mc +xmd)2
. (24)

It can be seen from Eq. (24) that χD(x,k⊥) → 1

as mc → ∞, since there is no spin interaction be-

tween the two quarks in the heavy-flavor meson, i.e.,

the spin of the heavy constituent decouples from the

gluon field, in the heavy quark limit
[19]

. However the

c-quark is not heavy enough to neglect the Melosh

factor. After integration over k⊥ the full form of D

meson DA can be achieved (Model III):

ϕ(III)
D (x) =

Af
D

√

6x(1−x)
8π3/2fDb

f
D

y

[

1−Erf

(

bf
Dy

√

x(1−x)

)]

×

exp

[

−bf
D

2 (xm2
d +(1−x)m2

c −y2)

x(1−x)

]

, (25)

where y = xmd + (1− x)mc and the error function

Erf(x) is defined as Erf(x) =
2

π

∫x

0

exp(−t2)dt. Using

the same constraints as in Eqs. (19) and (20), the pa-

rameters Af
D and bf

D are fixed as Af
D = 209GeV−1 and

bf
D

2
= 0.540GeV−2.

In this paper we will employ the above three kinds

of models to do numerical calculation. All these DA’s

of the D-meson are plotted in Fig. 1 for comparison.

It can be seen that although they all have a maximum

at x ' 0.65, the shapes of them are rather different,

especial in the region 0<x< 0.3 and 0.5<x< 0.8.

Fig. 1. Different kinds of D-meson DA’s,solid

and dashed curves correspond to Model III

and II, while the dotted line expresses Model

I.

4 Numerical results and discussion

Apart from the DA of the D meson, the decay

constant of Bc-meson fBc
is among the important

nonperturbative inputs. For consistency, we use the

following corrector

K(q2) = i

∫
d4xeiqx〈0|c̄(x)(1+γ5)b(x),

b̄(0)(1−γ5)c(0)|0〉, (26)

to recalculate it in the two-point sum rules. The cal-

culation should be limited to leading order in QCD,

since the QCD radiative corrections to the sum rule

for fBc→D(q2) are not taken into account. The value of

the threshold parameter sBc

0 is determined by a best

fit requirement in the region 8GeV26M 2612GeV2,

where M 2 is the corresponding Borel parameter. The

same procedure is performed for fB, in almost the

same Borel “window”. The results are listed in Ta-

ble 1. As we have ignored all the radiation correc-

tions, we don’t expect our values of fBc
and fB to be

good predictions of that quantity. We use the same

threshold parameters for the corresponding form fac-

tors in the LCSRs, except for the Borel parameter

M 2
LC, which is taken asM 2

LC 'M 2/〈u〉, with 〈u〉 being

the average momentum faraction involved. It turns

out that the form factors depend little on M 2
LC in

the region 15 < M 2
LC < 20. The other input param-

eters are taken as mB = 5.279GeV, mD = 1.869GeV,

mBc
= 6.286GeV.

Table 1. Parameter sets for fBc
and fB, s

Bc

0

and sB
0 for fBc

and fB respectively; mb, fBc

and fB are given in GeV, s
Bc

0 and sB
0 in GeV2.

mb s
Bc

0 fBc
sB
0 fB

set 1 4.6 43.0 0.243 30.7 0.145

set 2 4.7 42.0 0.189 30.2 0.117

set 3 4.8 41.2 0.137 29.8 0.090
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With these inputs, we can carry out the numeri-

cal analysis. In particular, we redo the previous cal-

culation for B → Dlν̃ in Ref. [13] and show the cor-

responding form factor FB→D(v · v′) in Fig. 2. The

result for the form factor of Bc → Dlν̃ is given in

Fig. 3. For FB→D(v · v′), similar results can be ob-

tained by applying the various model DA’s at large

recoil region v·v′ ' 1.59, i.e., q2 ' 0, but rather differ-

ent values at the zero recoil point q2 = q2
max. It can be

understood easily from the involved region of the DA.

While q2 = 0 corresponds to ∆B ' 0.75 according to

Eq. (15), q2 = q2
max corresponds to ∆B ' 0.6, and the

models of the D-meson DA in the region 0.5<x< 0.8

are rather different. However, the LCSR result at the

zero recoil point (q2 = q2
max) is less reliable, we can

not get a final conclusion from the difference of the

form factor at this point. Fortunately, the case for

Bc → Dlν̃ is just opposite, which can be seen from

Fig. 3. There is a big difference of the form factor at

the point q2 = 0. A detailed comparison for the form

factor at this point with other approaches is shown

in Table 2. The big difference between model I and

others comes from the different contributions of the

DA’s in the involved region 0<x< 0.45. Due to the

exponential suppression at the end points, the results

from Model II and III are much smaller than that

from Model I, and are consistent with the 3PSR re-

sults with the Coulumb corrections included, and the

PM result. It can also be seen from Fig. 2 and Fig. 3

that, in both cases, Model II and III actually differ

little, which means that the influence of the Melosh

factor is not so important due to the heavy c quark.

Fig. 2. FB→D as a function of the velocity

transfer (with the parameters in the set 2).

The thin lines express the experiment fits re-

sults, the solid line represents the central val-

ues, the dashed(dash-dotted) lines give the

bounds from the linear(quadratic) fits. The

thick lines correspond to our results, with the

solid, dashed and dash-dotted lines for Model

III, II and I respectively.

Fig. 3. fBc→D(q2) calculated by using different

kinds of DA models. The solid, dashed and

dash-dotted lines correspond to Model III, II

and I respectively. Here the threshold param-

eter set 2 has been used.

Table 2. Form factor fBc→D(0) of Bc →Dlν̃ calculated with different kinds of D-meson DA’s, in comparison

with that of the 3-Points Sum Rule (3PSR) without
[11]

and with
[20]

the Coulumb corrections and Potential

Model (PM)
[20]

.

model I model II model III 3PSR
[11]

3PSR
[20]

PM
[20]

fBc→D(0) 0.55 0.25 0.28 0.13±0.05 0.32 0.29

The calculated form factor for Bc → Dlν̃ can be

fitted excellently in the calculated region 0 < q2 <

15GeV2 by the parametrization:

fBc→D(q2) =
f(0)

1−afq2/m2
Bc

+bf(q2/m2
Bc

)2
. (27)

The values of fBc→D(0), af and bf are listed in Ta-

ble 3.

Extrapolating the form factor to the whole kinetic

region 0 < q2 < (mBc
−mD)2 ≈ 19.5GeV2 using this

parametrization, we get:

Γ (Bc →Dlν̃) = (0.197±0.013)×10−15GeV, (28)

and

BR(Bc →Dlν̃) = (1.35±0.05)×10−4. (29)

where τ(Bc) = 0.45ps and Vub = 0.0037 have been

used. The central values are calculated by using the

parameters set 2, while the upper and lower bounds

are given by using set 3 and set 1 respectively. Our

result for the branching ratio is much larger than
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BR(Bc → Dlν̃) = 0.4×10−4 from Ref. [20], they em-

ployed a simple pole approximation to extrapolate the

form factor to the whole region. It is also much larger

that the PM result BR(Bc → Dlν̃) = 0.35× 10−4[21]
,

and the result BR(Bc → Dlν̃) = 0.6 × 10−4 from

Ref. [22].

Table 3. Form factor fBc→D(q2) in a three-

parameter fit (27). The three rows correspond

to the calculated form factors using different

sets of parameters, respectively.

f(0) af bf

set 1 0.288 3.79 4.23

set 2 0.283 3.92 4.47

set 3 0.288 4.03 4.77

5 Summary

We have discussed the form factor for B→D tran-

sitions FB→D(y), using the improved QCD LCSR ap-

proach where with the chiral current correlator cho-

sen only the leading twist DA of the D-meson is rel-

evant at twist-3 accuracy. The resulting LCSR’s for

FB→D(y) are available in the velocity transfer region

1.14< y < 1.59. Calculation is done using three dif-

ferent twist-2 DA models for D meson. It has been

shown the numerical results are less sensitive to the

choice of DA, and are of a central value slight smaller

than but within the error in a agreement with those

obtained by fitting the data on B→Dlν̃. In the larger

recoil region 1.35< y < 1.59 where pQCD is applica-

ble, the results presented here are consistent with the

ones of pQCD. From the practical calculations, we

find that the present results might be extrapolated to

the smaller recoil region so that the B→D transitions

are calculable in the whole kinematically accessible

range, using the improved LCSR approach.

Also, we argue that for understanding the form

factor for B → Dlν̃ in the whole kinematical range

a combined use is necessary of three different meth-

ods: the lattice QCD (with the heavy quark symme-

try considered), the improved LCSR and the pQCD

approaches, which are adequate to do calculation in

different kinematical regions and so could be comple-

mentary to each other. The LCSR approach plays a

bridge role in doing such calculation.

The present findings can be improved once the

QCD radiative correction to the LCSR is taken into

account and a more reliable twist-2 DA of D meson

becomes available. From the previous discussion in

Ref. [2], however, it is expected that the QCD radia-

tive correction cannot change the present results too

much.

The Bc meson has been observed by the CDF

and D0 groups in the different channels. In this pa-

per we study the weak form factor of the decay pro-

cess Bc(B)→Dlν̃ by using the chiral current correla-

tor within the framework of the QCD light-cone sum

rules, which is similar to the approach for the weak

form factor fBπ(q2) in Ref. [2]. The calculated form

factors depend on the distribution amplitude of the

D meson, and we employ the three different mod-

els for the D meson. It has been shown that the

results using the model with a exponential suppres-

sion at the end points are consistent with other ap-

proaches. Our results can also confirm the including

of the Coulumb corrections in the 3PSR calculations

for the semileptonic decay Bc → Dlν̃. In the LCSRs

for the form factors of Bc(B)→Dlν̃, the involved re-

gion of the D meson distribution amplitude is rather

different. Combining the information in the two pro-

cesses, we can find which model is more suitable for

describing the D meson.

We have made a parametrization (27) to the

form factor by fitting our calculation in the re-

gion 0 < q2 < 15GeV2 , and the decay width

and the branching ratio of the process Bc→Dlν̃

have been calculated. It has been shown that

Γ (Bc → Dlν̃) = (0.197 ± 0.013) × 10−15GeV and

BR(Bc → Dlν̃) = (1.35± 0.05)× 10−4. The results

are different from other approaches. It will be ex-

pected to test the different predictions in the coming

LHC experiments.

We would like to thank Dr. X. G. Wu for helpful

discussions.
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A^äkÃ�6'é¼ê�1I¦Ú5KO�

B(Bc)→Dlν̃L§�/GÏf

�7

(¥I�Æ�pUÔnïÄ¤ �® 100049)

Á� 3QCD1I¦Ú5K (LCSR)µeSA^äkÃ�6'é¼êO�B(BC ) → Dlν̃PCL§�f/GÏ

f. ¤¼��/GÏf�L�ª=�6uD0f�Ì�?©Ù�Ì (DA). A^
naD0f�©Ù�ÌO

�
/GÏfFB→D(0) Ú FBc→D(0). 3�Ý[£1.14< y <1.59�«�S¦31Ix2 = 0NC�Î¦ÈÐm

(OPE)�±k���¹e¤O��/GÏf1�3Ø���S�B → Dlν̃L§¢�êâ���. 3��À«

�1.35< y <1.59¼��/GÏfFB→D(0)´��6QCD(pQCD)(J����. ¤±�©�O�3é��:

QCD, ­§�é¡5ÚpQCD�måxù�^§kÏu?�ÚéB→Dlν̃�[L§�n). O�¦^
3à:

äk�êØ$�©Ù�Ì1�, éFBc→D(0)�ýó�Ù¦�{¼��(J´�'�, k|uäk¥Õ?��n

:¦Ú5K (3PSR)�{¤��(J.

'�c /GÏf 1I¦Ú5K þfÚÄåÆ(QCD)

2007 – 03 – 30 Âv


