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Microbunch Instability in Wigglers *
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Abstract We studied the microbunch instability in wigglers induced by coherent synchrotron radiation (CSR)

theoretically and numerically for the first time. This instability occurs only at very small energy spread, and

reaches maximum when the energy of electrons and the peak value of the magnet field adopt specific values.

Results show that the instability may slightly exist in the wiggler of Beijing Free Electron Laser (BFEL), but

does not happen at all in the wigglers of the proposed China Test Facility (CTF) for the X-ray free electron

laser.
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1 Introduction

The beam instability was assumed to be one chal-

lenging issue for the development of electron accel-

erators and new free electron lasers
[1—3]

. The mi-

crobunch instability induced by coherent synchrotron

radiation (CSR) has been studied in storage-rings and

bunch compressors
[1—4]

. Many causes such as the

current jitter of the electron gun generate the mi-

crobunch density perturbation, which can be ampli-

fied through the CSR force. Typically CSR is emitted

for wavelengths compared to the length of the elec-

tron bunch and leads to a detrimental tailed-head in-

teraction. Thus the instability maximizes at moder-

ate wavelengths of the microwave density perturba-

tion. Some of the studies employed a linear Vlasov

equation, where the CSR impedance was introduced

which is a function of the curvature radius of the elec-

tron trajectory
[3]

. With these studies, we first argue

that whether the microbunch instability exists in a

wiggler. This is the motivation of this paper.

In this paper, we first introduce the theoretical

methods for studying the microbunch instability in a

wiggler. Then we show the numerical results of the

practical wiggler of the Beijing Free Electron Laser

(BFEL) and wigglers taking other parameters, with

brief analysis included. Finally, we make the conclu-

sion and discussion.

2 Theoretical methods

CSR of a bunch in a bunch compressor may lead

to the microwave instability producing longitudinal

modulation of the bunch with wavelengths which are

small compared to the bunch length
[5]

. The theory of

the microbunch instability in the bunch compressors

caused by CSR was described in S.Heifets’ paper
[3]

,

where single particle motion is considered. The mag-

nitude of the density modulation, G(s) = |gk(s)|

where k =
2π

λ
is the perturbation wave number (λ:

the perturbation wavelength) and s is the longitudi-

nal position along the reference particle trajectory, is

maintained in the integral equation which takes the

form of
[3]

:

gk(s) = g0
k(s)+

∫ s

0

K(s,s′)gk(s
′)ds′ . (1)
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The value of G(s) measures the amplification of

the microwave density perturbation: G(s) > 1 means

the microbunch instability and G(s) < 1 means no in-

stability. The definition of g0
k(s)and K(s,s′)can be re-

ferred to the paper [3], both determined by the beam

properties and the environment characteristics
[3]

. To

calculate g0
k(s) and K(s,s′), the curvature radius of

the beam trajectory ρ(s) plays an important role since

it changes the dispersion function D(s), the momen-

tum compressing factor R56(s) and the the CSR wake

impedance Z(k,s)
[3, 6]

:

Z(k,s) =−i
k1/3(1.63i−0.94)

ρ(s)2/3
×

Z0

4π
, (2)

where Z0 = 377Ω. Z(k,s) are employed by g0
k(s) and

K(s,s′). In the previous cases, whether it is the ring

or the bunch compressor, ρ(s) keeps constant in a long

range of s; while in a wiggler, ρ(s) changes along the

particle trajectory. Though Eq. (2) is correct in the

absence of edge effect which requires a long magnet,

it can be an estimate of Z(k,s) in our case. This as-

sumption is the basis of our study on the microbunch

instability in a wiggler.

To get Z(k,s) of the wiggler, we first calculate

the function of ρ(s). For any curve in the x-y plane,

denote the slope by y′ =
dy

dx
, and y′′ =

dy′

dx
, the cur-

vature radius is
[7]

:

ρ(s) =−(1+y′2)3/2/y′′ . (3)

Consider the case of the wiggler. Denote the lon-

gitudinal coordinate by x and the transverse by y.

Suppose the wiggler period length is λw, the max-

imal magnet field is Bw, the period number is N ,

the relativistic electron energy factor is γ, the initial

slice energy spread of the beam is σp, the normal-

ized beam emittance is ε0. With the first-order ap-

proximation, the trajectory curve can be written as

y = Ymaxsin
(2π

λw

x
)

where Ymax is the amplitude of the

transverse motion
[8]

:

Ymax =
eλ2

wBw

4π2γm0c
. (4)

Here m0 is the electron mass, e is the electron’s

electric quantity and c is the light velocity in the vac-

uum. Then the curvature radius at x is:

ρ(s) =−
[1+Y 2

maxk
2
w cos2(kwx)]3/2

Ymaxk2
w sin(kwx)

(5)

where kw =
2π

λw

.

After that, using Eq. (2) and (1), a computer code

can be employed to calculate gk(s).

3 Numerical results

First we select the wiggler of Beijing Free Elec-

tron Laser (BFEL) as the subject investigated. The

main parameters of the BFEL wiggler: Bw=0.3T,

λw=3cm, N=40; the typical relativistic factor of the

electron γ = 60. The dispersion function D(s) and

the momentum compressing factor R56(s) are shown

in Fig. 1(a) and Fig. 1(b) respectively. Both of their

magnitudes are several orders smaller than that of

a typical bunch compressor
[3]

, mainly because the

BFEL wiggler length (1.2m) is much shorter than the

compressor one (∼10m)
[3]

. Attributed to the wiggler

periodicity, D(s) and R56(s) propagate with periodic

oscillations. A typical profile of G(s) for the BFEL

wiggler is shown in Fig. 1(c). The oscillation am-

plitude of G(s) slowly increases and the final G ex-

ceeds 1.0, indicating the slight amplification of the

microwave density perturbation.

Fig. 1. (a) D(s); (b) R56(s); (c) G(s) for the

BFEL wiggler, parameters: γ =60, Bw=0.3T,

λw=3cm, N=40, λ=20µm, ε0=1µm, σp=3×

10−5.

Second we vary the wiggler parameters, the beam

parameters and the perturbation wavelengths to see

their respective effect on the microwave density mod-

ulation. The final amplification factor of the mi-
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crowave density perturbation, denoted by Gf , is our

major concern here.

Fig. 2 shows the typical dependence of Gf on the

perturbation wavelength λ. The Gf(λ) has a sin-

gle peak at the specific λ, agreeing with the previ-

ous findings
[3]

. At very short wavelengths, the mi-

crobunch instability will not occur.

Fig. 2. The dependence of Gf on λ, parameters:

γ=60, Bw=0.9T, λw=3cm, N=20, ε0=1µm,

σp=3×10−5.

We also change the properties of wiggler period,

N and λw. Fixing other parameters of γ, λ, Bw,

ε0, σp at typical values, a typical Gf-N relation is as

Fig. 3(a) shows, and a typical Gf-λw relation is as

shown in Fig. 3(b). Both of the two relations seem

monotonous — however, as we will show in the final

paragraph of this part, the monotonicity is not always

the truth but a typical case.

Fig. 3. A typical relation between (a) Gf -N

with λw=3cm; (b) Gf -λw with N=20, the

other parameters: γ=60, Bw=0.9T, λ=20µm,

ε0=1µm, σp=3×10−5.

By tuning the electron energy γ and the mag-

net field Bw, G(s) varies attributed to the change of

Ymax and R(s). The effect of γ on Gf can be seen in

Fig. 4(a), the wiggler parameters are the same as the

BFEL wiggler except N=20. We find that Gf maxi-

mizes when γ adopt specific values, about 8 here cor-

responding to 4MeV of electron energy. For very low

energy such as 2MeV or below, the microbunch insta-

bility vanishes significantly. We also check Gf-γ and

Gf-Bw relations with other typical wiggler parame-

ters, and have obtained the similar results as Fig. 4.

The typical effect of Bw on Gf is shown is

Fig. 4(b). Gf maximizes at specific Bw values. The

BFEL wiggler has Bw=0.3T, locating at the bottom

region of Gf-Bw curve, rather immune to the mi-

crobunch instability.

The existence of knee point in Fig. 4(a) and

Fig. 4(b) can be qualitatively understood as this: Ac-

cording to Eq. (5), if Ymax is extremely large with

Ymaxkw � 1, ρ(s)∝ Y 2
max for most values of s; if Ymax

is extremely small with Ymaxkw � 1, ρ(s) ∝
1

Ymax

.

Both cases uniformly have very large ρ. Very large ρ

means the modulation factor K(s,s′) → 0 and G(s)

can not be amplified
[3]

. Only when Ymax is moderate

and K(s,s′) has observable values, can G(s) be sig-

nificant. Thus the Gf-Ymax relation peaks at specific

Ymax values. Since Ymax ∝
Bw

γ
according to Eq. (4),

the knee points of Gf-γ function in Fig. 4(a) and Gf-

Bw function in Fig. 4(b) are easily understood.

Fig. 4. The typical dependence of Gf on (a)

γ with Bw = 0.3T and (b) Bw with γ=60,

other parameters: λw=3cm, N=20, λ=20µm,

ε0=1µm, σp=3×10−5.

After that, we study the influence of the beam

quality parameters: the initial normalized emittance

ε0 and the slice energy spread σp, respectively shown

in Fig. 5(a) and Fig. 5(b). Smaller emittance ε0 leads

Fig. 5. The dependence of Gf on (a) ε0 with

σp=3×10−5; (b) σp with ε0=1µm, other pa-

rameters: γ=60, Bw=0.9T, λw=3cm, N=20,

λ=20µm.
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to stronger microbunch instability as shown in

Fig. 5(a). By increasingσp, Gf decreases due to the

effect of landau damping. The Gf -σp dependence in

Fig. 5(b) has a saturation when σp is sufficiently small

because very small σp cancels the effect of R56 uni-

formly.

Finally we address one remarkable observation.

While adjusting all the parameters of γ, Bw, λw, N ,

λ, ε0, σp in a large range, the profile of G(s) may be

significantly different from Fig. 1(c). With some atyp-

ical parameters, Gf -N is not monotonous as Fig. 3(a)

but fluctuate along N , as Fig. 6 shows. This can

be observed by tuning the electron relativistic fac-

tor γ to very small values, i.e., γ = 5.5 here. Though

practically wigglers do not work with such low-energy

electrons even for the infrared FEL, this difference is

so remarkable that Gf is no longer the extreme point

of G(s) and the microbunch instability may occur in

the middle of the wiggler but vanishes at the termi-

nal. In this case, the evolution of G(s), especially the

maximal value of G(s) is more important than the

final Gf . Its mechanism is not very clear at present.

Fig. 6. Typical profile of G(s) in contrast with

the typical one in Fig. 1(c). Except γ = 5.5,

the other parameters are the same as Fig. 1(c).

4 Discussion

Succeeded by the previous studies of the micro-

bunch instability driven by CSR in the ring and the

bunch compressor
[1—5]

, we study the micronbunch in-

stability in a wiggler for the first time. Wigglers are

usually employed to generate radiations of various

wavelengths, where the traveling electron beam plays

an important role since it is the radiation source. The

BFEL wiggler was studied as an example. With the

typical parameters, the amplification factor of the mi-

crowave density perturbation oscillates periodically,

and the oscillating magnitude changes monotonously.

For BFEL, this instability is rather slight.

Besides that, we studied the microwave density

modulation with different parameters. The typical

results are listed. When tuning the incident electron

energy as low as 2—4MeV, we observed that the in-

stability may maximize in the middle of the wiggler,

instead of the two terminals. Though this is not the

usual case, it reflects the complexity of the microwave

density modulation behavior driven by CSR. Another

significant phenomenon is that the microbunch in-

stability maximizes when the peak value of the wig-

gler magnet field or the relativistic factor of electrons

adopts specific values. We employ this to study the

wigglers of the China Test Facility (CTF) for the X-

ray free electron laser, one has λw=5.8cm, Bw=1.28T,

N=103 and the other has λw=3.8cm, Bw=0.93T,

N=303, both with the electron energy of 840MeV,

the slice energy spread σp = 10−4 and the normalized

emittance 1.23µm, We find that the microbunch in-

stability does not occur in the full range of the two

wigglers. The microbunch instability observed in our

simulation hints that the microbunch instability oc-

curs only at very small energy spread, so it is an ef-

fective method to cure this instability by diluting the

energy spread.
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