Research on Measurement of ¹⁸²Hf with HI-13 AMS System^{*}

QIU Jiu-Zi^{1,2;1)} JIANG Shan² HE Ming² YIN Xin-Yi² DONG Ke-Jun² GUAN Yong-Jing³ WU Shao-Yong²

1 (Chinese People's Armed Police Force Academy, Langfang 065000, China)

2 (Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China)

3 (Department of Physics, Guangxi University, Nanning 530000, China)

Abstract ¹⁸²Hf with half-life of about (8.90 ± 0.09) Ma is an extinct radionuclide and can only be produced by a supernova explosion in nature. Therefore ¹⁸²Hf is an ideal candidate nuclide for the study on possible supernova explosions in the vicinity of the earth within the last 100 million years. In addition, ¹⁸²Hf is a longlived radionuclide of particular interest for nuclear engineering. Accurate measurement of ultra-trace ¹⁸²Hf is very important for reactor design, studies on nuclear cosmo-physics and other fields. With an accelerator mass spectrometry (AMS), it is possible to detect the trace amounts of ¹⁸²Hf. In this paper, the detection method of ¹⁸²Hf with HI-13 AMS system at China Institute of Atomic Energy (CIAE) and the chemical procedures to reduce ¹⁸²W interference are presented. The energy and TOF two-dimension spectra of ¹⁸²Hf and ¹⁸³W for blank and a series of standard samples have been obtained, respectively. The ¹⁸²W contribution to the counts in ¹⁸²Hf peak was corrected by ¹⁸³W normalization. The detection sensitivity of this AMS facility for ¹⁸²Hf/¹⁸⁰Hf ratio measurement is about 4.15×10^{-11} at present.

Key words ¹⁸²Hf, accelerator mass spectrometry, supernova, isotope ratio

1 Introduction

¹⁸²Hf is a long-lived radionuclide of particular interest in the study of supernova explosion events. ¹⁸²Hf is believed to be produced by *r*-process nucleosynthesis, but it can also be produced by a fast *s*process in massive stars^[1]. During a supernova explosion, certain amount of ¹⁸²Hf could be injected into the surrounding interstellar medium (ISM). If such an event took place in the vicinity of the earth within a few half-lives of ¹⁸²Hf, a signal should be detectable in appropriate archives. The fact that all primordial produced ¹⁸²Hf had already decayed, together with supernova as the only known production source in nature, makes ¹⁸²Hf an ideal candidate as an indicator of a possible supernova explosion in the vicinity of the earth within the last 100 million years. Recently, an indication for a nearby supernova explosion has been found through the detection of ⁶⁰Fe ($t_{1/2}=1.6$ Ma) in ferro-manganese crusts^[2]. But more measurements are needed for confirmation. One advantage of ¹⁸²Hf compared to ⁶⁰Fe is the possibility to detect signals from supernova events which happened long time ago because of its longer half-life.

In any production scenario, 182 Hf is expected to be present in the ISM as a result of recent nucleosynthesis. The γ -ray detection of 182 Hf is unfeasible due to its overall low activity. However, deposition of ISM grains by accretion onto the earth could make direct detection of 182 Hf possible in slow-accumulating reservoirs such as deep-sea sediments. With an accelerator mass spectrometry it is possible to detect the trace

Received 8 October 2006

^{*} Supported by National Natural Science Foundation of China (10490185)

¹⁾ E-mail: jiumm@163.com

amounts of ¹⁸²Hf. The AMS detection method of ¹⁸²Hf was first presented by Christof Vockenhuber^[3] at the Vienna Environmental Research Accelerator (VERA), a dedicated AMS facility based on a 3MV tandem accelerator. The detection of ¹⁸²Hf in deepsea sediment samples was performed by Christof Vockenhuber at VERA. Due to the insufficient sensitivity and the interference from the isobaric nuclide ¹⁸²W, his results were unsatisfactory.

In this work, the detection method of ¹⁸²Hf with a 13MV tandem accelerator (HI-13) mass spectrometry and the chemical procedures to reduce the isobaric interference from ¹⁸²W are presented.

2 Sample preparation

The stable neighboring isotopes and isobar ¹⁸²W are the main interferences for $^{182}\mathrm{Hf}$ detection. So the two prerequisites for AMS measurement of ¹⁸²Hf are high mass resolution (for separation of stable neighboring isotopes, mainly ¹⁸⁰Hf) and isobar separation (because of the stable isobar ¹⁸²W). A mass resolution of about 220 of our AMS facility could satisfy the measurement of ¹⁸²Hf. But the energy of less than 100MeV available at the high-energy side of the AMS facility is insufficient to separate the stable isobar ¹⁸²W from ¹⁸²Hf in the final detector system. According to Christof Vockenhuber^[3], ¹⁸²W suppression of about 6000 can be achieved by using the sample material of HfF_4 and the extracting negative ions of HfF_5^- from an ion source. However, further removal of ¹⁸²W by chemical separation is still required for successful AMS determination of ¹⁸²Hf.

2.1 Preparation of HfF₄ samples

In this experiment, ¹⁸²Hf was produced through irradiating 50mg HfO₂, enriched in ¹⁸⁰Hf to 98.3%, with the high neutron flux of the heavy water research reactor at CIAE for eighteen-days in December 2002. The reactor neutron flux was about 4.54×10^{13} n·cm⁻²·s⁻¹ at the sample irradiation site. In the reactor, ¹⁸⁰Hf may capture a neutron to produce ¹⁸¹Hf, and the produced ¹⁸¹Hf may capture a second neutron to produce ¹⁸²Hf. After a cooling time of 920 days, the sample was purified with chemical procedures to reduce W, the ratio of 182 Hf/ 180 Hf was then determined with a thermal ionization mass spectrometry (TIMS) to be $(1.628\pm0.011) \times 10^{-6}$. Standard samples with 182 Hf/ 180 Hf ratios of (3.221 ± 0.034) $\times 10^{-8}$ and $(3.452\pm0.042) \times 10^{-10}$ were prepared using a series of dilution of the irradiated sample with non-irradiated enriched HfO₂ powder. Meanwhile the 182 W/ 183 W ratio in samples measured with TIMS was 1.78.

About 10mg of the HfO_2 standard sample material was dissolved in 5mL 40% HF and 5mL 63% HNO_3 mixed solution. The solution was heated on a hot plate, and evaporated to about 2mL, another 5mL 40% HF and 5mL 63% HNO_3 was added and evaporated to about 1mL, then 2mL 40% HF and 2mL 63% HNO_3 solution was added and evaporated to near dryness. After that, 2mL 40% HF was added to dissolve the residue and then evaporated to dryness. At last the sample was roasted in oven for 2 hours at the temperature of 120°C to obtain desiccated HfF_4 powder. The blank sample material of HfF_4 powder was prepared using non-irradiated enriched HfO_2 with the same chemical procedures as for the standard sample.

2.2 Column separation procedure

The HfF₄ samples prepared above were respectively re-dissolved in 10mL 1mol/L HF solution for column separation. A 1mL sample solution was loaded onto an anion exchange column. The column was rinsed with 10mL of 1mol/L HF. Hf was then eluted by 30mL of 0.01mol/L HF-9 mol/L HCl, while W and Ta retained on the column. Tracer experiments showed that the average chemical yield of Hf was greater than 95%, the decontamination factor for W was about 80 and the contents of both W and Ta in the resulting sample were at 10×10^{-9} level. In order to further reduce the amount of ¹⁸²W. large amount of ^{186}W (enriched to 96.7%) was added in the sample and the above separation procedure was then repeated. In this way, the content of 182 W could be reduced to 10^{-9} level. The Hf sample purified with this procedure was transformed to HfF_4 powder again and it was satisfactory for keeping the isobaric interferences from AMS determination of ¹⁸²Hf.

3 Ion extraction

In the experiment, the sample material of HfF_4 was mixed with 1: 1 silver powder and pressed firmly into Al-target holders of a 40 position MC-SNICS source. The silver powder was served as both electrical and thermal conductor.

The interest isotopes of Hf were sputtered by Cs⁺ as negatively charged HfF₅ and extracted with about 15kV from the ion source. On the low-energy side, the beam was analyzed by means of a magnetic 90° deflector.

The combined efficiency of sputtering and ionization for HfF_5^- ions was measured to be about 3.4×10^{-3} with a target of known sample mass. The typical HfF_5^- beam current was about 150nA. The current for the whole lifetime of the target was collected and the amount of extracted ¹⁸⁰ HfF_5^- ions was calculated.

4 Beam transport

The measurement of 182 Hf was performed with a 13MV tandem accelerator (HI-13) mass spectrometry at CIAE^[4]. On the high-energy side, the beam was analyzed by means of a 90° analyzing magnet with a mass-energy product of 200MeV·amu and a 15° electrostatic deflector.

The value of terminal voltage was dictated by the maximum mass-energy product of the high-energy beam-transport system. For ¹⁸²Hf ⁹⁺ ions, the maximum usable terminal voltage was 8.5MV, which corresponds to a final energy of 82.1MeV. In the terminal of the HI-13 tandem accelerator, a carbon foil of $3\mu g \cdot cm^{-2}$ in thickness was used as a stripper. On the high-energy side, ¹⁸²Hf ⁹⁺ ions were analyzed.

At the beginning of the research, the ¹⁸²Hf beam transport was simulated with the sample material of ¹⁸⁰HfF₄ and extracting ions of ¹⁸⁰HfF₅⁻. Due to the significant scattering induced by carbon foil and Coulomb explosion, the beam current in high-energy side was too small to adjust for beam transport. In order to make the adjustment of beam transport easier and maximize ¹⁸⁰Hf ⁹⁺ current for analysis, the sim-

ulation transportation was divided into three steps. First, because the ${}^{180}\text{HfO}_2^-$ current was much larger than ${}^{180}\text{HfF}_5^-$ at low-energy side, the sample material of ${}^{180}\text{HfO}_2$ was used and ${}^{180}\text{HfO}_2^-$ ions were extracted from the ion source to simulate 180 Hf $^{9+}$ beam transport of the sample material of ${}^{180}\text{HfF}_4$ and ${}^{180}\text{HfF}_5$ ions. In the simulation transport, ¹⁸⁰Hf ⁹⁺ ions had the same energy with the 182 Hf $^{9+}$ ions, and the parameters of ions optics system were tuned for the optimum state of beam transport. Secondly, to hold the line, the sample material of ${\rm ^{180}HfF_4}$ was used and the ${}^{180}\text{HfF}_{5}^{-}$ ions were extracted to transport the 180 Hf $^{9+}$ beam with the same energy as 182 Hf $^{9+}$ beam, and the parameters of ions optics system were finely tuned for the optimum state of ¹⁸⁰Hf beam transport. Thirdly, the sample material of $^{180}\mathrm{HfF_4}$ was used and the ${}^{180}\mathrm{HfF}_5^-$ ions were extracted to simulate the ${}^{182}\mathrm{Hf}$ beam transport of the sample material of $^{182}\mathrm{HfF}_4$ and 182 HfF $_{5}^{-}$ ions. In the third step, the 180 Hf $^{9+}$ ions had the same momentum as ¹⁸²Hf ⁹⁺ ions, and the parameters of electronic and magnetic elements after analyzing magnet were further tuned for optimal state of ¹⁸⁰Hf ⁹⁺ beam transport. The research showed that the three-step method of beam simulation transport makes the adjustment much easier.

The transmission efficiency from low-energy side Faraday-cup to detector was measured to be about 5.0×10^{-3} .

5 Ion detection

The ¹⁸²Hf ions were detected by a golden-silicon surface barrier detector (SBD) for energy determination, and a time of flight (TOF) detector for isotope identification. The flight length of the TOF detector was 2m. The energy detector with energy resolution of about 4% was used to separate the nuclides having large mass difference and different charge states with ¹⁸²Hf. The TOF detector was used to distinguish the adjacent nuclides with the same charge state, such as Hf isotopes which have small difference in energy but large difference in time of flight with ¹⁸²Hf. The start detector of TOF was a micro-channel plate (MCP) detector with a carbon foil of $10\mu g \cdot cm^{-2}$ in thickness, and the stop detector was a SBD (meanwhile used as energy detector). The time resolution of TOF detector was better than 0.6ns, and the difference of time of flight between ¹⁸⁰Hf and ¹⁸²Hf was about 2.4ns. Therefore, the TOF detector was sufficient to distinguish ¹⁸²Hf from ¹⁸⁰Hf. The detector efficiency was measured to be about 80%. The overall efficiency for ¹⁸²Hf measurement with the AMS facility was about 1.36×10^{-5} .

6 Results

The energy and time of flight two-dimension spectra of 182 Hf (shown in Fig. 1) and 183 W have been obtained, respectively. The stable Tungsten isotope of 183 W was measured for an accurate subtraction of the 182 W contribution to the mass 182 events with the known 182 W/ 183 W isotope ratio of 1.78 measured by TIMS. The energy and TOF two-dimension spec-

tra of ¹⁸²Hf and ¹⁸³W for blank sample and a series of standard samples have been measured respectively, and then the ratios of ¹⁸²Hf/¹⁸⁰Hf were determined relative to the reference value of $(1.628\pm0.011)\times10^{-6}$ for the irradiated sample. The results were shown in Table 1. The detection limit of ¹⁸²Hf/¹⁸⁰Hf ratio was obtained to be 4.15×10^{-11} for our AMS facility.

Fig. 1. Two-dimension Spectrum of ¹⁸²Hf.

Table 1. The ratios of ${}^{182}\text{Hf}/{}^{180}\text{Hf}$ measured for blank and standard samples.

sample	$(^{182}\mathrm{Hf}+^{182}\mathrm{W})/^{180}\mathrm{Hf}$	$^{183}W/^{180}Hf$	$^{182}W/^{180}Hf$	$^{182}{\rm Hf}/^{180}{\rm Hf}$
blank	$(4.15\pm2.95)\times10^{-11}$			
3.45×10^{-10}	$(4.85 \pm 0.69) \times 10^{-10}$	$(1.48\pm0.47)\times10^{-10}$	$(2.25\pm0.71)\times10^{-10}$	$(2.60\pm0.86)\times10^{-10}$
3.22×10^{-8}	$(3.37 \pm 0.34) \times 10^{-8}$	$(4.70\pm1.42)\times10^{-10}$	$(7.14 \pm 6.87) \times 10^{-10}$	$(3.30 \pm 0.35) \times 10^{-8}$
1.63×10^{-6}	$(1.63 \pm 0.01) \times 10^{-6}$	$(2.37 \pm 0.58) \times 10^{-10}$	$(3.60\pm3.57)\times10^{-10}$	$(1.63 \pm 0.01) \times 10^{-6}$

7 Summary

The detection limit of 182 Hf depends on the 182 W content in the sample material and the background from neighboring isotopes, mainly ¹⁸⁰Hf. Chemical separation is a direct method to remove the W isotopes from the sample material. In addition, if we know the $^{182}W/^{183}W$ ratio in the samples, we can correct the ¹⁸²W interference by measuring the ¹⁸³W. In this work, the main difficulty of the AMS measurement of ¹⁸²Hf is the intense beam of isotope ¹⁸⁰Hf. Although most of the ¹⁸⁰Hf are suppressed by the injection magnet and the analyzing magnet, a small fraction of this intense beam can interfere with the ¹⁸²Hf measurement. The main reason for this leakage of interfering ions is charge changing processes induced by the residual gas within the elements. Angular scattering on the residual gas, electrodes, slits or vacuum chamber walls can also allow the interfering ions to be detected. The scattering cross-sections are in the order of 10^{-20} b compared to the cross sections of 10^{-16} — 10^{-15} b for charge changing^[5]. However, in the detector of TOF, the angular scattering on the carbon foils is serious. The leakage can be reduced by simply adding more filter elements and using thinner carbon foils. Each additional filter element can provide leakage suppression for several orders of magnitude. A new ion injector with mass resolution of larger than 380 is being constructed, and the thinner carbon foils from ACF-Metals Arizona Carbon Foil Co. Inc. are expected to be mounted for suppressing the interference from the neighboring isotopes in our AMS at CIAE .

We acknowledge Tian Weizhi from CIAE for his helpful discussion, Zhang Chunhua and Zhang Jinsong from Nuclear Power Institute of China for their help in the sample preparation.

References

- 1 Meyer B S, Clayton D D. Space Sci. Rev., 2000, **92**: 133
- 2 Knie K, Korschinek G, Faestermann T et al. Phys. Rev. Lett., 1999, 83: 18
- 3 Christof Vockenhuber, Max Bichler, Robin Golser et al. Nucl. Instrum. Methods, 2004, B223-224: 823
- 4 JIANG Shan, HE Ming, JIANG Song-Sheng et al. Nucl. Instrum. Methods, 2000, B172: 87
- 5 Betz H D. Rev. Mod. Phys., 1972, 44: 465

用HI-13串列加速器质谱装置测量¹⁸²Hf的研究*

仇九子^{1,2;1)} 姜山² 何明² 寅新艺² 董克君² 管永精³ 武绍勇²

1 (中国人民武装警察部队学院 廊坊 065000) 2 (中国原子能科学研究院核物理研究所 北京 102413) 3 (广西大学物理系 南宁 530000)

摘要¹⁸²Hf的半衰期为(8.90±0.09)Ma, 是一个接近灭绝的放射性核素.超新星爆炸是自然界中已知的惟一能产生¹⁸²Hf的途径.因此¹⁸²Hf是研究近1亿年来在地球附近可能发生的超新星事件的理想核素.另外,¹⁸²Hf是核 工程中特别感兴趣的一个长寿命放射性核素.精确测量超痕量的¹⁸²Hf对反应堆的设计和核天体物理学以及其 他研究领域都是非常重要的.用加速器质谱有可能实现对超低含量¹⁸²Hf的测量.在中国原子能科学研究院的 HI-13加速器质谱装置上对¹⁸²Hf的测量方法以及样品的化学去钨方法进行了研究,分别得到了空白样品以及系 列标准样品的¹⁸²Hf和¹⁸³W的能量-飞行时间双维谱.¹⁸²W对¹⁸²Hf计数的贡献是通过测量¹⁸³W的计数归一扣 除的.目前本工作对¹⁸²Hf的测量灵敏度为4.15×10⁻¹¹(¹⁸²Hf/¹⁸⁰Hf比值).

关键词 ¹⁸²Hf 加速器质谱 超新星 同位素比值

^{2006 - 10 - 08} 收稿

^{*} 国家自然科学基金(10490185)资助

¹⁾ E-mail: jiumm@163.com