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Abstract The shape phase transition between spherical U(5) and γ-unstable O(6) nuclei is investigated

systemically for the nuclei in the A∼ 130 region by the constrained relativistic mean field theory. By examining

potential energy surfaces and neutron Fermi energies, we suggest that 136Ba and 132,134Xe are possible nuclei

with E(5) symmetry, which is favored by the observed ratio R4/2 = (E+
41−E+

01)/(E
+
21−E+

01). While the RMF

predicted E(5) symmetry for 128,130,132Te cannot be supported by the observed ratio R4/2. Whether these

nuclei are critical-point nuclei should further be examined in experiments.
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1 Introduction

Critical-point symmetries in nuclear structure re-

ceive considerable attention recently. Many physi-

cal systems (nuclei, molecules, atomic clusters, etc.)

are characterized by the shape in their equilibrium

configuration. These shapes are rigid in many cases.

However, in some cases the system is rather floppy.

A challenging problem is how to describe the prop-

erty of the phase transition point. In the original

interacting boson model (IBM)
[1]

, where nuclei are

regarded as the systems composed of bosons with the

U(6) symmetry, one sees three dynamical symmetries

U(5), SU(3) and O(6), which geometrically corre-

spond to the spherical vibration, the axially deformed

rotation, and the γ-unstable rotation, respectively. In

the IBM language, the symmetry X(5) corresponds

to the critical point between the U(5) and SU(3) sym-

metry limits while the symmetry E(5) describes the

region of the phase transition between the U(5) and

O(6) dynamical symmetries. Thus, the X(5) (E(5))

critical-point symmetry can be used to confirm the

first- order (second-order) shape phase transition be-

tween the spherical nucleus and the axially deformed

symmetric (γ-unstable) nucleus
[2, 3]

.

The first identified nucleus with the E(5) (X(5))

behavior was 134Ba[4] (152Sm)[5]. Systematic investi-

gations suggested that 102Pd, 106,108Cd, 124Te, and
128Xe are closely related to the E(5) critical-point

model
[6]

, while 126Ba, 130Ce, and the N=90 isotones

of Nd, Sm, Gd, and Dy would demonstrate the X(5)

symmetry
[7]

. Additional examples can be found in the

recent review articles on phase transitions in Ref. [8]

and references therein. The E(5) (X(5)) symmetry

provides a classification of states and the analytic ex-

pression for the observables in the region where the

nuclear structure changes most rapidly
[9]

. How to

identify a nuclei which is close to the E(5) (X(5))
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symmetry is essential in better understanding the

shape phase transition. Based on the Bohr-Mottelson

collective model, the nuclei corresponding to the crit-

ical point of phase transition have been discussed

by solving Bohr Hamiltonian with different poten-

tial shapes
[10—16]

. Recently, the relativistic mean field

(RMF) theory has been applied to study the critical-

point symmetry due to its success in describing a

large amount of nuclear phenomena. The details can

be found in the recent review articles and references

therein
[17, 18]

. In Ref. [19], 148,150,152Sm have been

pointed out to be the possible critical-point nuclei

with X(5) symmetry by the RMF approach. We have

systemically studied the rare-earth nuclei by using the

RMF theory, and have predicted some critical-point

nuclei, such as Ce
[20]

, Nd, Gd and Dy isotopes
[21]

. In

Ref. [22], the RMF theory with the NL3 force was

used to obtain potential energy surfaces (PES) for

a number of isotopes, which were suggested to have

critical-point symmetries. It was shown that PES

for the nuclei with the E(5) symmetry is relatively

flat, whereas for the nuclei with the X(5) symme-

try PES has a bump. However, more detailed infor-

mation of the shape evolution for the nuclei in the

A ∼ 130 region has not been studied in the frame-

work of the RMF theory. In this paper, we examine

potential energy surfaces and neutron Fermi energies,

and compare those results with the experimental γ

energy transition ratios so that we can predict E(5)

critical-point nuclei in the A∼ 130 region.

2 The theoretical framework

To analyze critical-point nuclei by using the RMF

theory, we first sketch the microscopic approach. In

the framework of the RMF theory, the nuclear in-

teraction is usually described by exchanging three

mesons: the isoscalar-scalar meson σ, which supplies

the medium-range attraction between nucleons, the

isoscalar-vector meson ω
µ, which offers the short-

range repulsion of the nucleon-nucleon interaction,

and the isovector-vector meson ρµ, which provides

the isospin dependence of the nuclear force. The ef-

fective Lagrangian density is the following

L = ψ̄ (iγµ ∂µ−M)ψ+
1

2
∂µ
σ∂µσ−

1

2
m2

σ
σ2−

1

3
g2σ

3− 1

4
g3σ

4−gσψ̄σψ− 1

4
W µνWµν +

1

2
m2

ω
ωµωµ−gωψ̄γ

µωµψ+
1

4
g4 (ωµωµ)2−

1

4
RµνRµν +

1

2
m2

ρ
ρµρµ−gρψ̄γ

µτρµψ−

1

4
F µνFµν −eψ̄γµ 1−τ3

2
Aµψ . (1)

The classical variation principle leads to the Dirac

equation

[−iα •∇+V (r)+β(M+S(r))]ψi = εiψi (2)

for nucleon spinors and the Klein-Gordon equations
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]

,

S(r) = gσσ(r)

(4)

are the vector and scalar potentials, respectively.

The Eqs. (2) and (3) can self-consistently be

solved by iteration. The details can be found in

Refs. [23, 24]. The binding energy at certain deforma-

tion value is obtained by constraining the quadrupole

moment 〈Q2〉 to a given value µ2 in the expectation

value of the Hamiltonian
[25]

〈H ′〉= 〈H〉+ 1

2
Cµ (〈Q2〉−µ2)

2 , (5)

where Cµ is the constraint factor. The deforma-

tion parameter β2 is obtained from the calculated

quadrupole moments 〈Q2〉 for the proton and the neu-

tron through

〈Q2〉= 〈Q2p〉+〈Q2n〉=
3√
5π
AR2

0 β2 (6)

with R0 = 1.2A1/3.
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3 Numerical details and results

For the nuclei studied in this paper, full N=14

deformed harmonic oscillator shells are taken into ac-

count and very good convergency for the resultant

binding energy and deformation is obtained. The con-

verged deformation corresponding to different µ2 val-

ues is not sensitive to the deformation parameter β0 of

the harmonic oscillator basis in a reasonable range be-

cause a large basis is used. Different choices of β0 will

lead to different iteration circles in the self-consistent

calculation and different computational time. But

physical quantities such as the binding energy and the

deformation do not change much. Thus the deforma-

tion parameter β0 of the harmonic oscillator basis can

be chosen near the expected deformation so that the

higher accuracy and shorter computation time can be

achieved. By varying the µ2 value, the binding en-

ergy at different deformations can be obtained. The

pairing effect is considered by the constant gap ap-

proximation (BCS) in which the pairing gap is taken

as 11.2/
√
A for even number nucleons.

The binding energies and the quadrupole deforma-

tions for the ground states in the constrained RMF

theory with the PK1
[26]

parameter set are tabulated

in Table 1. Calculations with the NL3
[27]

and TMA
[28]

parameter sets are also performed. The results which

do not depend on the effective interactions are not

presented here. For binding energies, the data are

well reproduced within a deviation of 0.5%. Par-

ticularly for 122Te, the difference between the RMF

results and the data is less than 0.175MeV. For de-

formations, tendencies of shape curves with respect

to the neutron number in the Ba and Xe isotopes are

correctly reproduced in the RMF calculations. Al-

though there is a little underestimation for neutron-

riched nuclei, the obtained deformations consider-

ably agree with the experimental data, especially for

the nuclei near the stable-line. For Te isotopes, the

oblate shapes are predicted in the RMF calculation,

which seem to be in disagreement with the experimen-

tal data. Comparing with the fact that the prolate

or oblate shapes cannot be distinguished experimen-

tally, the RMF calculation with the assumption of

the oblate shape can correctly reproduce the data of
120—128Te.

Table 1. Experimental data
[29, 30]

and resultant ground state binding energy EB and quadrupole deformation

β2 for Ba, Xe and Te isotopes obtained in the constrained RMF calculations with the PK1 interaction.

EB/MeV EB/MeV EB/MeV
Nucl.

Expt. Cal.
Nucl.

Expt. Cal.
Nucl.

Expt. Cal.
124Ba 1036.127 1036.958 122Xe 1027.640 1028.289 120Te 1017.280 1017.539
126Ba 1055.850 1056.730 124Xe 1046.254 1047.035 122Te 1034.330 1033.155
128Ba 1074.727 1076.144 126Xe 1062.913 1064.960 124Te 1050.684 1049.157
130Ba 1092.731 1094.581 128Xe 1080.743 1082.084 126Te 1066.374 1066.038
132Ba 1110.042 1112.404 130Xe 1096.906 1098.289 128Te 1081.440 1081.301
134Ba 1126.700 1129.748 132Xe 1114.447 1114.205 130Te 1095.942 1096.181
136Ba 1142.781 1146.710 134Xe 1127.434 1129.900 132Te 1109.942 1111.420
138Ba 1158.298 1164.212 136Xe 1141.877 1145.685 134Te 1123.270 1125.841

β2 β2 β2
Nucl.

Expt. Cal.
Nucl.

Expt. Cal.
Nucl.

Expt. Cal.
124Ba 0.302 0.297 122Xe 0.259 0.241 120Te 0.201 −0.177
126Ba 0.279 0.256 124Xe 0.212 0.219 122Te 0.185 −0.175
128Ba 0.249 0.218 126Xe 0.188 0.198 124Te 0.170 −0.152
130Ba 0.218 0.180 128Xe 0.184 0.176 126Te 0.153 −0.131
132Ba 0.186 0.142 130Xe 0.169 0.152 128Te 0.136 −0.112
134Ba 0.161 0.115 132Xe 0.141 0.113 130Te 0.118 0.088
136Ba 0.126 0.071 134Xe 0.119 0.071 132Te ** 0.033
138Ba 0.090 0.000 136Xe 0.122 0.000 134Te ** 0.000
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Due to the success in describing ground state

properties, we apply the RMF theory to the study

of the nuclear shape phase transition. The resul-

tant potential energy curves for 124—138Ba, 122—136Xe,
120—134Te in the constrained RMF calculations with

the PK1 effective interaction are plotted in Figs. 1, 2

and 3, respectively. In each figure, the energy of the

ground state is taken as a reference.

Fig. 1. The potential energy surfaces for Ba iso-

topes obtained in the constrained RMF calcu-

lation with the PK1 interaction. While the

ground state binding energy is taken as a ref-

erence.

Fig. 2. The same as Fig. 1, but for Xe isotopes.

Fig. 3. The same as Fig. 1, but for Te isotopes.

It is found that the ground state of 138Ba is in the

spherical shape and has a stiff barrier of over 17MeV

with increasing deformation. PES of 136Ba is quite

flat around β2=0.00. Comparing with 136Ba, PES of
134Ba is less flat, and is symmetric around β2=0.00

(from β2=−0.15 to β2=0.15), i.e., non-axially sym-

metric deformation from γ= 0◦ to γ= 60◦. It implies

that 134Ba might be a γ-unstable nucleus. With this

indication, as emphasized in Ref. [22] that the rela-

tively flat PES is the character of the critical-point

symmetry E(5), 136Ba whose character situates be-

tween the vibration mode and the γ-unstable behav-

ior is a possible candidate with the E(5) symmetry.

Starting from 132Ba, with decreasing neutron num-

ber, the ground state gradually changes to the de-

formed form and the potential energy curve becomes

softer, and finally reaches to well deformed 124—130Ba.

The same calculations are also performed for Xe and

Te isotopes. The corresponding PES’ are shown in

Figs. 2 and 3, respectively. Similar to the analysis for

Ba isotopes, we suggest that 132,134Xe and 128,130,132Te

are the candidates of critical-point nuclei with the

E(5) symmetry, respectively.

One of the merits of microscopic nuclear mod-

els such as RMF theory is that it can provide de-

tailed information on single particle levels, shell struc-

ture, and Fermi energy etc., which are very impor-

tant for us to discuss nuclear structure and to ex-

amine the deformation induced effect. In Fig. 4, the

neutron Fermi energies for 124—138Ba, 122—136Xe, and
120—134Te are demonstrated. These results are cal-

culated with the effective interaction PK1. Similar

single-particle structures can be obtained by employ-

ing two other effective interactions, and thus will not

be presented here.

Fig. 4. Neutron Fermi energies for Ba, Xe and

Te isotopes in the constrained RMF calcula-

tions with the PK1 interaction.

From Fig. 4, a monotonic decreasing behavior of

neutron Fermi energy with increasing neutron num-
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ber is seen for Ba, Xe, Te isotopes till N=78. After

N=78, the change of the Fermi energy appears un-

usual. Fermi energy in 136Ba increases unconvention-

ally, while in 138Ba, it decreases dramatically. This

suggests that the phase transition might occur in

N=80, i.e., 136Ba might be a critical-point nucleus

with the E(5) behavior. The same phenomena are

also found for Xe and Te isotopes, which implies that
132,134Xe and 128,130,132Te are possible critical-point

nuclei with the E(5) symmetry, which agrees with

the PES analysis.

To confirm the theoretical predictions, the ra-

tios of experimental excitation energies as well as

corresponding characteristic ratios R4/2 =(E+
41 −

E+
01)/(E

+
21−E+

01) for Ba, Xe, and Te isotopes are listed

in Table 2.

Table 2. The experimental values
[31]

of R4/2 for

Ba, Xe and Te isotopes.

Nucl. R4/2 Nucl. R4/2 Nucl. R4/2

124Ba 2.83 122Xe 2.50 120Te 2.07
126Ba 2.78 124Xe 2.48 122Te 2.09
128Ba 2.68 126Xe 2.42 124Te 2.07
130Ba 2.52 128Xe 2.33 126Te 2.04
132Ba 2.43 130Xe 2.25 128Te 2.01
134Ba 2.32 132Xe 2.16 130Te 1.94
136Ba 2.28 134Xe 2.04 132Te 1.72
138Ba 1.31 136Xe 1.29 134Te 1.23

From Table 2, one sees that the experimental data

for 132,134,136Ba are in agreement with the predictions

mentioned above. Especially for 136Ba, the observed

ratio R4/2=2.28 is located almost exactly at the mid-

dle point between the mode of harmonic vibration

with U(5) symmetry (R4/2=2.00) and the mode of γ-

unstable rotation with O(6) symmetry (R4/2=2.50).

In addition, the U(5) limit nucleus 138Ba is correctly

predicted, which is in agreement with the data of

R4/2=1.31 with a bit non-collective behavior. In par-

ticular, the well deformed nuclei 124—130Ba predicted

by the RMF theory are supported by the experiment

data by comparing with the SU(3) limit value of

R4/2=3.33. All these show that RMF calculations can

satisfactorily reproduce the experimental data avail-

able. Therefore, the E(5) symmetry for 134Ba pre-

dicted by RMF might be reasonable and should be

checked in the experiment.

For Xe isotopes, the observed ratio shows that
124—134Xe whose behaviors situate between the

spherical (R4/2=2.00) and the γ-unstable behaviors

(R4/2=2.50) are possible critical-point nuclei with the

E(5) symmetry. This again agrees with the analyses

on PES and the Fermi energy. While for Te isotopes,

all the observed ratios are smaller than 2.2, which

implies that the predicated Te isotopes with the E(5)

symmetry are not favored by the experimental R4/2

data. Whether 128,130,132Te are the nuclei with the

E(5) symmetry should further be examined in the

experiment.

4 Conclusion

The shape phase transition from the spherical

U(5) to the γ-unstable O(6) symmetries for the nu-

clei in the A ∼ 130 region is systemically investi-

gated by the constrained relativistic mean field the-

ory. The experimental data for the properties of

the ground states of Ba, Xe and Te isotopes are

fairly well described. By examining nuclear poten-

tial energy surfaces and Fermi energies, 136Ba and
132,134Xe are suggested to be the possible nuclei with

the E(5) symmetry, which is favored by the observed

ratio R4/2=(E+
41 −E+

01)/(E
+
21−E+

01). While predicted
128,130,132Te with the E(5) symmetry are not sup-

ported by the observed ratio R4/2, which should fur-

ther be examined in the experiment.
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