
1 31 ò 1 4 Ï

2007 c 4 �

p U Ô n � Ø Ô n
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS

Vol. 31, No. 4

Apr., 2007

Influence of Sampling Interval and Number of Projections

on the Quality of SR-XFMT Reconstruction

DENG Biao YU Xiao-Han1) XU Hong-Jie

(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)

Abstract Synchrotron Radiation based X-ray Fluorescent Microtomography (SR-XFMT) is a nondestructive

technique for detecting elemental composition and distribution inside a specimen with high spatial resolution

and sensitivity. In this paper, computer simulation of SR-XFMT experiment is performed. The influence of the

sampling interval and the number of projections on the quality of SR-XFMT image reconstruction is analyzed.

It is found that the sampling interval has greater effect on the quality of reconstruction than the number of

projections.
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1 Introduction

Synchrotron Radiation based X-ray Fluorescent

Microtomography (SR-XFMT) is a non-destructive

technique by combining fluorescence microanalysis

with tomographic techniques, which allows the recon-

struction of a spatial distribution of non-radioactive

elements inside a specimen from a set of fluorescence

signals produced by monochromatic synchrotron ra-

diation. It can map these elements simultaneously,

in trace quantities, and at micron resolution. Since

SR-XFMT was first proposed in 1986 by Boisseau
[1]

,

SR-XFMT has been modeled by several groups
[2—7]

and made as a powerful tool for several fields of re-

search. The ability to determine elemental distribu-

tions within a sample has many real and potential

applications, including the mapping of iodine distri-

butions in thyroid tissue
[8]

, the determination of el-

ement distributions in an individual fluid inclusion
[9]

and the reconstruction of distributions of heavy met-

als in roots
[10]

, and so on
[11—13]

.

In the SR-XFMT experiment, a monochromatic

hard X-ray microbeam illuminates a thin line through

a sample, stimulating emission of fluorescence X-rays

from any element whose K-edge lies below the beam

energy. By scanning and rotating the sample in

the first-generation tomographic geometry, data are

acquired allowing the reconstruction of the two- or

three-dimensional distributions of the stimulated el-

ements in the sample. In principle, it is possible to

make a scan with a slice-to-slice separation equal to

the transverse size of the beam, however, the full 3D

scan of samples with several tens of microns dimen-

sions is usually not feasible due to time constraints.

For instance, the scan of a single slice of a sample of

300µm dimensions with 2µm spatial resolution and

1s/step dwell time takes already about 5h
[14]

. In or-

der to reduce the time of data collection and increase

the efficiency in the experiment, we have to increase

the sampling interval or reduce the number of pro-

jections. But the quality of reconstruction will be in-

fluenced. It is important to select suitable sampling

interval and the number of projections for reducing

cost and improving the quality of reconstruction in

SR-XFMT.

SR-XFMT will be an optional experimental tech-
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nique at SSRF (Shanghai Synchrotron Radiation Fa-

cility) hard X-ray micro-focusing beamline now under

construction. In this paper, computer simulation of

SR-XFMT experiment is performed. The influence of

the sampling interval and the number of projections

on the quality of SR-XFMT image reconstruction is

analyzed. A conclusion on the relationship between

the reconstruction quality and the sampling interval

and the number of projections can be drawn. It is

very useful for the real experiment study.

2 Principles of SR-XFMT

Figure 1 depicts a typical SR-XFMT experimen-

tal geometry. The coordinate system (x, y) is fixed in

the laboratory system. The system (s, t) represents

the rotating coordinate system associated with the

specimen. To obtain a single SR-XFMT projection,

the specimen is scanned through the monochromatic

hard X-ray microbeam in translation along s. After

each projection, it is rotated and the next projection

is recorded. The procedure is repeated until a full

rotation is completed in 180◦. At each step the X-ray

fluorescence excited by X-ray microbeam is recorded

by the fluorescence detector. Two PIN diodes, one

before and one after the specimen, are used for nor-

malization and measurement of the transmission, re-

spectively. The detection signal of a particular fluo-

rescence line v of an atomic species i is given by

Iiv(s,α) = CdetI0

∫+∞

−∞

exp

[

−

∫
t

−∞

µI(s,t′)dt′
]

d(s,t)×

exp

[

−

∫
∞

0

µF(s,t)db

]

dt =

∫
f(α,s,t,µI)d(s,t)giv(α,s,t,µF)dt , (1)

where I0 is the initial intensity of the incident X-ray.

Cdet describes the detector efficiency and attenuation

outside the sample.

f(α,s,t,µI) = I0 exp

[

−

∫
t
′

−∞

µI(s,t′)dt′

]

is the incident radiation intensity attenuated,

giv(α,s,t,µF) = Cdet×exp

[

−

∫
∞

0

µF(s,t)db

]

is the fluorescence radiation intensity attenuated. µI

and µF are the absorption coefficients at stimulating

and fluorescent energy that can be calculated from

absorption tomograms. d(s,t) denotes the distribu-

tion of an element inside a specimen.

Fig. 1. Experimental geometry for SR-XFMT.

The goal of image reconstruction in SR-XFMT is

to solve Eq. (1) for d(s,t). Various approaches are

available for the image reconstruction of the function

d(s,t): analytical reconstruction processes or the iter-

ative reconstruction process. For instance Hogan
[2]

et

al. have proposed an image reconstruction algorithm

with attenuation-correction that involves correcting a

straightforward FBP reconstruction of the measured

projection data by dividing each pixel value by the

average value of the attenuation experienced by this

pixel. Others have proposed more intensive itera-

tive approaches based on the use of singular-value de-

composition (SVD)
[3]

, algebraic reconstruction tech-

niques (ART), and maximum likelihood expectation

maximization (MLEM)
[4]

. All these approaches as-

sume that all the needed attenuation maps (at both

the incident and fluorescence energies) are known.

Schroer
[15]

and Golosio
[16]

et al. have proposed more

sophisticated iterative approaches that are applica-

ble when only the incident beam attenuation map is

known.

According to Hogan, the distribution of an ele-

ment d(s,t) can be approximated as:

d(s0, t0)≈
Ĩtotal(s0, t0)

∑n

i=1
f0(αi,si, ti)g0(αi,si, ti)

, (2)

where the subscripts zero on f and g signify the ap-

propriate absorption factors for the point (s0,u0); the

tilde above Itotal represents the operation of FBP.

This algorithm has already been dealt with in theory
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by Hogan et al. in simulation calculations, this leads

to good results. In this paper, image reconstruction

including attenuation effects correction from the sim-

ulation fluorescence data is achieved by the modified

FBP.

3 Numerical simulation

In order to determine the influence of the sam-

pling interval and the number of projections on the

quality of reconstruction, we have conducted simula-

tion studies of a numerical phantom using different

sampling intervals and a number of projections. The

computer simulations of SR-XFMT were performed

on a biological specimen for distributing a metal ele-

ment inside the specimen. Several assumptions were

made in order to simplify the computation.

(1) We simulated data collection for a two-

dimensional imaging geometry.

(2) The shape of the specimen used in the simu-

lation was regular geometry.

(3) Attenuation was assumed to be uniform within

the specimen. Fig. 2 depicts the object used as a sim-

ulated test sample. Its simulated chemical composi-

tion and distribution are reported in Table 1.

Fig. 2. (a) Shape of the sample used in the

simulation. The composition and concentra-

tion of the simulation sample is defined in Ta-

ble 1; (b) Element distribution in the simula-

tion sample.

Table 1. Chemical composition and concentra-

tion of the simulation sample.

concentration (weight %)
phase index

C, H, O, N · · · Cu

1 100.0 0.0

2 99.0 1.0

3 96.0 4.0

4 94.0 6.0

The fluorescence tomography projections of the

test sample were generated algebraically. The simu-

lated scan was performed in 128, 64 and 32 steps with

10µm, 20µm and 40µm sampling intervals for a pro-

jection while the angular step was 1, 2 and 5 degree,

which yields 180, 90 and 36 projections. In all cases,

SR-XFMT images were reconstructed using Hogan’s

modified FBP algorithm including attenuation cor-

rection. The reconstruction SR-XFMT images from

simulation data under different sampling interval and

a number of projections were shown in Fig. 3(a—i).

Fig. 3. Reconstructed images from numerical

simulation under different sampling interval

(number of scan steps(N)) and a number of

projections(M).

4 Discussion and conclusion

Usually, the assessment of reconstruction image is

based on visual examination and/or computing some

mathematical measure(s) of agreement between a re-

constructed image and the original object such as the

normalized root mean squared distance and the nor-

malized mean absolute distance to quantify the image

quality. Three mathematical measures can be taken

from the standard measurements used by Herman
[17]

.

The less these measurements are, the better the re-

construction quality becomes. These measurements

are defined as follows:
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The normalized root mean squared distance mea-

sure:

d =













n×n
∑

i=1

(ri−pi)
2

n×n
∑

i=1

(pi− p̄)2













1

2

, (3)

The normalized mean absolute distance measure:

r =

n×n
∑

i=1

|ri−pi|

n×n
∑

i=1

|pi|

, (4)

The worst relative error between the phantom and

reconstruction:

e =
n×n

max
i=1

|pi−ri|

pmax−pmin

, (5)

where pi denotes the phantom image value of the ith

pixel, ri denotes the reconstruction image value of

the ith pixel, and p̄ denotes the average pixel value

of pi. n×n determines the total quantity of pixels

in the image matrix in use. The measurements of

reconstruction under different sampling intervals and

projections were shown in Table 2.

Table 2. The measurements of the quality of reconstruction under different sampling intervals and projections.

sampling number of

interval scan steps(N)
projections(M) d r e

180 1.44×10−2 1.50×10−2 1.44×10−2

1 128 90 1.44×10−2 1.52×10−2 7.62×10−3

36 1.45×10−2 1.62×10−2 4.90×10−2

180 2.52×10−2 2.32×10−2 2.42×10−2

2 64 90 2.52×10−2 2.32×10−2 3.43×10−2

36 2.56×10−2 2.48×10−2 6.42×10−2

180 4.65×10−2 4.04×10−2 5.72×10−2

4 32 90 4.65×10−2 4.04×10−2 5.05×10−2

36 4.66×10−2 4.10×10−2 0.16

Fig. 3 (a,b,c) are the reconstructed images under

different projections with the same 40µm sampling

interval. From these images we can see that the qual-

ity of image reconstruction does not become better

when the number of projections are increased in the

same sampling interval. From Table 2 we also can

find that the corresponding measurements d, r, e of

Fig. 3 (a,b,c) do not become less. From Fig. 3 (d,e,f) ,

Fig. 3 (g,h,i) and the corresponding measurements in

Table 2 we also find that the quality of image recon-

struction does not become better when the number

of projections are increased in the same sampling in-

terval.

Fig. 3 (c,f,i) are the reconstructed images under

different sampling intervals with the same 180 projec-

tions. From these images we can see that the bound-

aries become more and more clear with the sampling

interval reducing. From Table 2 we also find that

the corresponding measurements do become less with

the sampling interval reducing. From Fig. 3 (a,d,g),

Fig. 3 (b,e,h) and the corresponding measurements

in Table 2 we also find that the quality of image re-

construction does become better when the sampling

interval is reduced in the same number of projections.

Fig.3 (c,e) are the reconstruction images of the

same ray number (M ×N). From the two images we

can find that the quality of Fig. 3(e) is better than

Fig. 3(c). From Fig. 3(c,e) and the corresponding

measurements in Table 2 we find that the quality be-

comes better when the sampling interval becomes less

in the same ray number.

According to Fig. 3, Table 2 and the above dis-

cussion, a conclusion on the relationship between the

reconstruction quality and the sampling interval and

the number of projections can be drawn. It is found

that the sampling interval has greater effect on the

quality of reconstruction image than the number of

the projections. In the real experiment, we can select

the suitable sampling interval and the number of pro-

jections for reducing cost and improving the quality

of image reconstruction in SR-XFMT.
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