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Abstract Properties of color-flavor locked (CFL) strange quark matter have been studied in a mass-density-

dependent model, and compared with the results in the conventional bag model. In both models, the CFL

phase is more stable than the normal nuclear matter for reasonable parameters. However, the lower density

behavior of the sound velocity in this model is completely opposite to that in the bag model, which makes the

maximum mass of CFL quark stars in the mass-density-dependent model larger than that in the bag model.
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1 Introduction

Because of its theoretical and experimental signif-

icance, strange quark matter (SQM) has been investi-

gated for several decades
[1]

. Dated back in the 1970’s,

it was already known that proper strangeness fraction

could lower the energy per baryon of the system
[2, 3]

.

In 1984, Witten
[4]

put forward that quark matter

with strangeness could be the true ground state of

QCD. Immediately after Witten’s conjecture, Farhi

and Jaffe
[5]

calculated the properties of SQM in the

framework of MIT bag model. The results show that

SQM is more stable than normal nuclear matter for

a wide range of parameters. Therefore, a great deal

of works on SQM emerged
[6—9]

.

Besides the normal unpaired SQM mentioned

above, there is another kind of quark matter
[10, 11]

.

Bailin and Love
[12]

suggested the state of color su-

perconductivity by analogy with the theory of su-

perconductivity in condensed matter physics. Al-

ford, Rajagopal, and Wilczek proposed a new mech-

anism of paring, the color-flavor locking paring

mechanism
[13, 14]

. There are three massless quarks

at high baryon densities, and the color and flavor

SU(3)C ⊗ SU(3)L ⊗ SU(3)R symmetries are broken

down to the diagonal subgroup SU(3)C+L+R by the

formation of a condensate of quark Cooper pairs. Un-

der such assumptions the form of condensate is

〈qα
i Cγ5qβ

j 〉∝ εijIε
αβI, (1)

where the Latin indices (i, j) signify flavors and the

Greek indices (α,β) stand for colors. The Cooper

pairs in this form of condensation are symmetric un-

der simultaneous exchange of color and flavor.

Although it is generally believed that Quantum

Chromodynamics (QCD) is the dynamics of strong

interaction in the level of quarks, there is still no

way to exactly solve the motion equations because

of the complexity, and so one has to resort to many

phenomenological models to compute the properties

of matter. The most commonly used model is the

MIT bag model, and many interesting results have
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been obtained
[1, 15]

. In the bag model, quark masses

are constant. As is well known, however, the particle

mass varies with environment, i.e., the density and/or

temperature. In this paper, we studied the proper-

ties of CFL strange quark matter in the frame work of

the quark mass density-dependent model, and com-

pared the results with those in the bag model. It is

found that the CFL phase is more stable than the

normal nuclear matter in both models. However, the

lower density behavior of the sound velocity is com-

pletely opposite, which makes the maximum mass

of CFL quark stars in the mass-density-dependent

model much larger than that in the bag model.

The paper is organized as such. In the subse-

quent section, we describe the thermodynamic po-

tential density of the CFL phase. Then in Sec. 3, we

discuss the thermodynamic treatment and calculate

the properties of CFL strange quark matter. As an

application, the obtained equation of state is applied

to calculate the mass-radius relation of CFL quark

stars in Sec. 4. Finally, a summary is given in Sec. 5.

2 Thermodynamic potential density

of the CFL quark matter

In order to see the difference between CFL and

the normal quark matter, we start our consideration

from the following thermodynamic potential density

for unpaired quark matter:

Ω =−
∑

i

giT

2π2

∫
∞

0

ln
[

1+e−(
√

p2+m2

i
−µi)/T

]

p2dp+B,

(2)

where gi is the degeneracy factor (it is 6 for quarks),

mi is the particle mass, and µi is the chemical po-

tential, the summation goes over all particle flavors

involved. At zero temperature, taking the limit of

T → 0 on the right hand side of the above expression

gives

Ω =−
∑

i

gi

2π2

∫νi

0

(

µi−
√

p2 +m2
i

)

p2dp+B, (3)

where νi is the Fermi momentum for flavor i. It can

be linked to the chemical potential µi by

νi =
√

µ2
i −m2

i . (4)

The properties of normal unpaired strange quark

matter have been investigated for more than two

decades since the pioneer works of many authors
[2—4]

.

In the case of CFL phase, due to the energy gap ∆,

determined by solving the gap equation
[13, 14, 16]

, a

new term should be added in the above expression.

The thermodynamic potential density for CFL quark

matter is then
[14, 17]

ΩCFL = −
∑

i

gi

2π2

∫ν

0

(

µi−
√

p2 +m2
i

)

p2dp−

3∆2µ2

π2
+B, (5)

where the µ ≡ (µu +µd +µs)/3 is the average poten-

tial of quarks. The common Fermi momentum ν is a

fictional intermediate parameter. To have maximum

paring, the common Fermi momentum is determined

by minimizing the thermodynamic potential, i.e.,

∂ΩCFL

∂ν
= 0. (6)

In the MIT bag model, mu, md, and ms are, respec-

tively, the current mass of u, d, and s quarks. Because

mu and md are extremely small, they can be treated

as zero. In this case, Eq. (6) gives

ν = 2µ−(µ2 +m2
s/3)

1/2
. (7)

Therefore, in the CFL phase, Eq. (4) is no longer

valid.

Because our purpose in this paper is to study how

the density-dependence of quark masses will influ-

ence the properties of CFL quark matter, the u and

d quark masses can not be treated as zero. Gener-

ally, the common Fermi momentum ν is obtained by

solving
∑

i

√

ν2 +m2
i = 3µ. (8)

The integration in Eq. (5) can be easily performed

out, giving

ΩCFL = −
∑

i

gi

48π2

{

ν
[

8µiν
2−

3(2ν2 +m2
i )

√

ν2 +m2
i

]

+

3m4
i ln

ν +
√

ν2 +m2
i

mi

}

− 3∆2µ2

π2
+B. (9)

If replacing the ν2 in this expression with µ2
i−m2

i , one

immediately gets the Eq. (2) of Ref. [17], with a global
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difference of minus sign (we believe that a global mi-

nus sign was lost there). However, as we mentioned

after Eq. (7) that the relation ν =
√

µ2
i −m2

i is no

longer valid in the CFL phase, the expression (2) in

Ref. [17] is surely not correct. In this paper, we use

the correct expression in Eq. (9) to calculate the prop-

erties of CFL strange quark matter.

3 Thermodynamical treatment in the

mass density-dependent model

In the following, we briefly discuss the thermo-

dynamic formulas corresponding to the mass density-

dependent model we use. The detailed derivation can

be found in the literature
[7, 18]

.

From Eq. (9), we can easily get the number den-

sity for each quark flavor from the relation ni =

−∂ΩCFL/∂µi. The result is

nu = nd = ns = (ν3 +2∆2µ)/π2, (10)

which explicitly shows that the numbers of u, d, and

s quarks are all equal to each other. Therefore, the

CFL strange quark matter is always naturally neu-

tralized, without requiring any electrons
[19]

.

The energy density E is also easy to get, i.e.,

E = ΩCFL +
∑

i

µini = ΩCFL +3nbµ, (11)

where nb ≡ (nu + nd + ns)/3 = nu = nd = ns is the

baryon number density.

For the pressure, however, one should be very

careful. To let the energy minimum appears exactly

at zero pressure, which is a general requirement of

thermodynamics
[18]

, an additional term should ap-

pear in the pressure expression:

P =−ΩCFL +nb

∑

i

∂ΩCFL

∂mi

∂mi

∂nb

. (12)

The second term is due to the density-dependence of

quark masses.

As for the density-dependent mass mi, it can be

devided into two parts as

mi = mi0 +mI. (13)

The meaning of Eq. (13) is clear. The first term

represents current quark mass, and the second term

mI, independent of flavors and densities, represents

the effect due to the interaction between quarks. In

principle, the density dependence of mI should be

determined from QCD. As mentioned before, how-

ever, there is no way to exactly solve QCD presently.

Therefore, the density dependence is normally given

phenomenologically. It has been shown that the fol-

lowing parametrization is reasonable
[7, 20]

mi = mi0 +
D

n1/3
b

, (14)

where D is a fixed constant determined by stability

argument. Such a form satisfies limnb→0 mI =∞ and

limnb→∞
mI = 0, which are just the requirements of

quark confinement and asymptotic freedom.

Because weak equilibrium is always reached in

SQM by the reactions like d,s ↔ u + e + ν̄e and

s+u↔ u+d, relevant chemical potentials satisfy

µd = µs, (15)

µd +µν = µu +µe. (16)

The CFL matter is naturally neutral and the number

of three quark flavors are equal, we therefore have

µe = 0. At the same time, we can write µν = 0 due

to the fact that neutrinos enter and leave the system

freely. Consequently, we have

µu = µd = µs. (17)

Therefore, only one chemical potential is indepen-

dent.

For a given baryon number density nb, we can

solve the common Fermi momentum ν and the only

independent chemical potential by solving Eqs. (8)

and (10). The energy density and pressure can then

be calculated, respectively, from Eqs. (11) and (12).

Because the current mass of u/d quarks is very

small, we simply take mu0 = md0 = 0. But for

the current mass of s quarks, we take ms0=120MeV.

The paring parameter is taken to be ∆=100MeV.

In the pure bag model calculation, the bag con-

stant is taken to be (170MeV)4. In the calculation

with quark mass density-dependent model, we take√
D=120MeV. But in this case, B should be smaller,

and we use B1/4=140MeV, according to the stabil-

ity arguements
[5]

. If one takes a zero bag constant in

this case,
√

D should be 156MeV
[18]

. However, the

presure balance would not be reached for CFL phase.
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In Fig. 1, we show the energy per baryon as a

function of density. Please note, the lowest energy

per baryon (the full dot) corresponds exactly to the

zero pressure (open cicle). For comparison, we have

also shown the result in the bag model. It is obvi-

ously seen that the energy per baryon in the density-

dependent model(QMDD) is lower than that in the

bag model. The corresponding equation of state is

given in Fig. 2.

Fig. 1. The energy per baryon as a function

of density. The minimum is 834MeV, located

at the density 0.28fm−3 where the pressure is

zero. The result from the bag model is also

shown for comparison.

Fig. 2. Equation of state

4 Mass-radius relation of CFL quark

stars

For a long time, it is believed that some of the neu-

tron stars are composed of quark matter, and thus, in

fact, they are quark stars. In this section, we assume

the compact star is a spherically symmetric object

consisting of CFL strange quark matter. The static

properties of such strange stars are obtained by solv-

ing the Tolman-Oppenheimer-Volkov equation
[21]

dp

dr
=−GmE

r2

(1+P/E)(1+4πr3P/m)

1−2Gm/r
, (18)

with the subsidiary condition

dm/dr = 4πr2E, (19)

where G = 6.707× 10−45MeV−2 is the gravitational

constant, r is the distance from the core of the star,

E = E(r) is the energy density, P = P (r) is the pres-

sure.

In Fig. 3, we plot the mass-radius relation of CFL

strange stars. It is found that the maximum mass is

about 2 times the solar mass in the density-dependent

model, but only 1.5 times in the bag model. This dif-

ferent is caused by the fact that the sound velocity

in the CFL quark matter is quite different in both

models. To understand this, we plot the velocity of

sound in Fig. 4. At higher densities, the results in

both models approach to the ultra-relativistic case,

as expected. At lower densities, however, the density

behavior is obviously opposite.The sound velocity In

the bag model goes up with decreasing densities, and

it may even exceed the speed of light. This is natu-

rally not reasonable from the viewpoint of the theory

of special relativity. While in the density- dependent

model, the sound velocity goes down to zero at zero

density. The difference in lower densities might thus

be an indication that the density-dependent mecha-

nism is more suitable for the description of CFL phase

than the conventional bag model.

Fig. 3. The mass-radius relation of CFL quark

stars. The maximum mass is about 2 times

the solar mass in the mass-density-dependent

model, but only 1.5 times in the bag model.

It should be noted that the model calculations

here are oversimplified. Many important factors are

not considered, e.g., when the density becomes lower,

CFL phase may transit to unpaired quark phase,

which will be studied in the future. So the concrete

values in this paper should not be taken seriously, and

further studied are needed.
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Fig. 4. Velocity of sound in the bag model

and in the mass-density-dependent model. At

higher densities, both approach to the ultra-

relativistic case. At lower densities, however,

the density behavior is obviously opposite.

5 Summary

We have studied the color-flavor locked strange

quark matter within the framework of the quark

mass-density-dependent model, and compared the re-

sults with those in the MIT bag model. It is found

that the lower density behavior of the sound velocity

is completely opposite in both models. The maxi-

mum mass of the CFL quark stars is thus bigger in

the mass-density-dependent model than in the bag

model.
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