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Abstract Pseudospin symmetry and spin symmetry in the relativistic harmonic oscillator are investigated

systematically by solving the Dirac equation with scalar and vector potentials and are found to be a good

approximation in realistic nuclei such as 208Pb. The pseudospin breaking and spin breaking are shown in cor-

relation with nuclear mean field. The harmonic oscillator frequency and the distance of well-bottom deviation

from the center of the potential play an important role in the splittings of energy and wavefunction. The

energy-level crossing are found for all the pseudospin partners. The dependence of splittings with quantum

numbers is also analyzed.
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1 Introduction

About 30 years ago, a quasidegeneracy was ob-

served in heavy nuclei between single-nucleon dou-

blets with quantum numbers (n,l,j = l + 1/2) and

(n − 1, l + 2, j = l + 3/2) where n, l, and j are

the radial, the orbital, and the total angular mo-

mentum quantum numbers, respectively
[1, 2]

. The

quasidegenerative states are suggested as the pseu-

dospin doublets j = l̃ ± s̃ with the pseudo orbital

angular momentum l̃ and the pseudospin angular

momentum s̃. Pseudospin has also been discussed

in many phenomena, including deformation
[3]

and

superdeformation
[4]

, magnetic moment
[5, 6]

and iden-

tical bands
[7—9]

. Because of these successes, there

have been comprehensive efforts to understand its ori-

gin since the discovery of this symmetry. Blokhin et

al.
[10]

performed a helicity unitary transformation in

a nonrelativistic single-particle Hamiltonian. They

showed that the transformed radial wave functions

have a different asymptotic behavior, implying that

the helicity transformed mean field acquires a more

diffuse surface. The application of the helicity opera-

tor to the nonrelativistic single-particle wave function

maps the normal states (l,s) onto the pseudostate

(l̃, s̃), while keeping all other global symmetries. The

same kind of unitary transformation was also con-

sidered earlier by Bahri et al. to discuss the pseu-

dospin symmetry in the non-relativistic harmonic

oscillator
[11]

. They showed that a particular condi-

tion between the coefficients of spin-orbit and orbit-

orbit terms, required to have a pseudospin symmetry

in that non-relativistic single-particle Hamiltonian,

was consistent with relativistic mean-field (RMF) es-

timates. Based on the RMF theories, Ginocchio has

identified a possible reason for this; namely that the

symmetry arises from the near equality in magnitude

of an attractive scalar S, and repulsive vector V , rel-

ativistic mean field, S ≈ −V , in which the nucleons

move[12]. They revealed that the pseudospin sym-
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metry is exact when doublets are degenerate. Meng

et al.
[13, 14]

showed that pseudospin symmetry is ex-

act when dΣ/dr = 0, where Σ = S + V and the

quality of the pseudospin approximation in real nu-

clei is connected with the competition between the

pseudo-centrifugal barrier and the pseudospin orbital

potential. A test of nuclear wave functions for pseu-

dospin symmetry was done in Refs. [15,16]. The pseu-

dospin symmetry in deformed nuclei has already been

extensively studied in the framework of the RMF

model. The conditions for an exact pseudospin sym-

metry and the relationships for the lower compo-

nents of the Dirac eigenfunctions were investigated

in Refs. [17,18]. The relationships between the upper

and lower components of the two states in the pseu-

dospin doublets have been studied thoroughly for re-

alistic deformed relativistic eigenfunctions
[19]

. There

are also many other investigations on the pseudo-spin

symmetry in the framework of RMF theory
[20—23]

. A

briefly review on pseudospin symmetry in RCHB the-

ory could be found in Ref. [24].

Recently, harmonic oscillator potential has re-

ceived considerable attention in many fields. The

spherical relativistic harmonic oscillator with spin

symmetry has been studied previously
[25—28]

. Chen

et al.[29] using a Dirac Hamiltonian with scalar S and

vector V potentials quadratic in space coordinates,

found a harmonic-oscillator like second order equa-

tion which can be solved analytically for ∆ = V −S =

0 as considered before by Kukulin
[27]

, and also for

Σ = S +V . Ginocchio has solved the triaxial, axial,

and spherical harmonic oscillators for the case ∆ = 0

and applied it to the study of antinucleons embedded

in nuclei
[30]

. The case Σ = 0 is particularly relevant

in nuclear physics, since it is usually pointed out as

a necessary condition for occurrence of pseudospin

symmetry in nuclei
[12, 25]

. Lisboa et al. have stud-

ied the generalized relativistic harmonic oscillator for

spin 1/2 particles, obtained the analytical solutions

for bound states of the corresponding Dirac equations

by setting either Σ or ∆ to zero
[31]

. Moreover, they

have researched the perturbation breaking of pseu-

dospin symmetry induced by a tensor potential
[32]

.

However, as stated in some papers
[12]

, the con-

ditions Σ = 0 or dΣ/dr = 0 can not be realized

in nuclei. Therefore, it is necessary to study the

pseudospin symmetry for relativistic nuclear poten-

tial. Alberto et al. have researched the nature of

pseudospin breaking in nuclei by solving the Dirac

equation with vector and scalar potentials of Woods-

Saxon type
[33]

. The roles played by the surface dif-

fuseness, the radius, and the central depth of the sum

of the standard vector and scalar nuclear potentials

in the energy splitting of pseudospin partners have

been analyzed. A systematics for the behavior of the

pseudospin splitting is drawn as functions of a, R and

V0. From the behavior of these splitting with Woods-

Saxon parameters, they have shown that pseudospin

symmetry has a dynamical character. Very recently,

pseudospin symmetry for the resonant states in 208Pb

is also investigated by solving the Dirac equation with

Woods-Saxon vector and scalar potentials
[34]

. How-

ever, pseudospin symmetry not only means single-

nucleon energy levels are quasi degenerate but also

means the lower components of pseudospin doublets

are equal in magnitude. Therefore, Guo et al.
[35]

re-

searched the nature of the pseudospin energy split-

tings and peudospin wavefunction splitting by solv-

ing the Dirac equation with vector and scalar poten-

tials of harmonic oscillator type and a systematics

for the behavior of the pseudospin splitting is drawn

as the harmonic oscillator frequency ω and the dis-

tance of well-bottom deviation from the center r0

vary. But their research on the pseudospin wave-

function splitting is incomplete. As we know, spin

symmetry is also important. The spherical, triaxial

and axially deformed relativistic harmonic oscillators

with spin symmetry have been studied in Ref. [30].

Guo et al.
[36]

have solved the s(s̃)-wave Dirac equa-

tion for a single particle with spin and pseudospin

symmetry moving in a central Woods-Saxon poten-

tial and the corresponding radial wavefunctions for

the two-component spiner and the energy spectra of

the bound states are obtained. We have investigated

pseudospin symmetry and spin symmetry in the rel-

ativistc woods-saxon
[37]

, very recently. Our purpose

here is to go further and investigate Pseudospin sym-

metry and spin symmetry in the relativistic harmonic
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oscillator shaped by the harmonic oscillator frequency

and the distance of well-bottom deviation from the

center. In the following, we first present the theoret-

ical formalism, then analyze systemically the pseu-

dospin breaking and spin breaking for the relativistic

harmonic oscillator.

2 Formalism

The Dirac equation of a nucleon with mass M

moving in an attractive scalar potential S(r) and a

repulsive vector potential V (r) can be written as

[a •p+β(M +S)+V ]Ψ = EΨ. (1)

For spherical nuclei, the nucleon angular momentum

J , and K = −β(σ •L+1) commute with the Dirac

Hamiltonian, where β, σ and L are the Dirac matrix,

Pauli matrix, and orbital angular momentum, respec-

tively. The wavefunctions can be classified according

to there angular momentum j and κ,

Ψnκ(r) =

(

fnκ

gnκ

)

=
1

r

(

Fnκ(r)Y l
jm(θ,φ)

iGnκ(r)Y l̃
jm(θ,φ)

)

, (2)

where n is the radial quantum number, and m is the

projection of angular momentum on the third axis.

The eigenvalues of k̂ are κ = ±(j +1/2) with ‘−’ for

aligned spin (s1/2,p3/2, etc.), and ‘+’ for unaligned

spin (p1/2,d3/2, etc.). when the angular part was split

off, the radial wavefunction satisfy the following equa-

tions
(

d

dr
+

κ

r

)

Fnκ(r) = (M +Enκ−∆)Gnκ(κ), (3)

(

d

dr
−

κ

r

)

Gnκ(r) = (M −Enκ +Σ)Fnκ(κ), (4)

where ∆ and Σ are assumed to be radial functions,

i.e., ∆ = V (r)−S(r) and Σ = V (r) + S(r).We per-

form a calculation using a relativistic potential of

harmonic oscillator type in the Dirac equation. The

corresponding scalar and vector components are the

mean field central nuclear potential, given as

U(r) = U0 +
1

2
Mω2(r−r0)

2 , (5)

where U(r) stands either for the vector or for the

scalar potential. Although this potential is not a

full self-consistent relativistic potential derived from

meson fields, it is realistic enough to be applied to

nuclei. Indeed, most self-consistent potentials have

harmonic oscillator-like shape, i.e., one can recognize

in them a depth U0, a harmonic oscillator frequency

ω, and a radius r0 describing the distance of well-

bottom deviation from the center. It is known that,

in certain isotope chains, as the mass number A in-

creases, the nuclear harmonic oscillator frequency ω

decreases according to the A1/3 law (~ω = 41A−1/3),

which means that it is also important to study the

role of the parameter ω in pseudospin symmetry and

spin symmetry. It is also meaningful to study the pa-

rameter r0, because the nuclear mean field often de-

viate from the center in many cases, especially for the

deformed nuclei. Furthermore, the harmonic oscilla-

tor potential can provide fully bound states which are

helpful to discuss the symmetry systemically. There-

fore the study of pseudospin partners splitting and

spin partners splitting as a function of these parame-

ters is meaningful and realistic enough to be applied

to most nuclei, at least qualitatively.

3 Results and discussion

Using harmonic oscillator potential for Σ and ∆,

we solved numerically the coupled first-order Dirac

equations for the radial fields F (r) and G(r). There

are altogether six parameters for Σ and ∆, namely,

the central depths, Σ0 and ∆0, two harmonic oscilla-

tor frequencies, and two radius parameters. In order

to make the harmonic oscillator potential closer to

nuclear mean field, the parameters in harmonic os-

cillator potential are determined by fitting the scalar

and vector potentials derived from the RMF calcu-

lations where 208Pb is chosen as a reference. The

parameters determined are listed in the Table 1. The

quality of our fitting is displayed in Table 2, where the

results of the present calculation (harmonic oscillator

potential) are shown, together with those obtained

by using a relativistic mean field approach with the

interactions NL3 for the same set of pseudospin dou-

blets. From Table 2, we can see that the agreement

between the present results and the RMF calculations

is considerably satisfactory. By using these parame-

ters, the radial wavefunctions of relativistic harmonic



254 p U Ô n � Ø Ô n ( HEP & NP ) 1 31 ò

oscillator are obtained with the upper components

and lower components are plotted in Fig. 1, in which

are found to be quite agreeable for the spin part-

ners and pseudospin partners, as noted previously

in Refs. [15,16]. Although such a near agreement of

wavefunction has been obtained for the relativistic

harmonic oscillator, the splitting between the dou-

blets cannot be neglected, especially on the surface.

The extent of splitting is connected with the single

particle orbital. For example, when l or l̃ increases,

the pseudospin wavefunction splittings increase and

the maximum splittings of all the wavefunctions move

towards the outside of the nucleus for the spin dou-

blets n=1 in Fig. 1(a) and pseudospin doublets ñ=1

in Fig. 1(b), as was noted for the spherical square well

potential in Ref. [12]. The similar case also appears

in other pseudospin partners for the doublets l̃=1 and

l̃=2, as shown in Fig. 1(c).

Table 1. The parameters in harmonic oscillator

potential determined by fitting the scalar and

vector potentials from the RMF calculations

with the NL3 for 208Pb. Listed are two central

depths (U0, Σ0 and ∆0), two harmonic oscil-

lator frequencies ω and two radius parameters

r0.

U0 ω r0

V +S −68.887 10.503 2.157

V −S 722.787 33.619 1.863

Table 2. Calculated neutron single-particle

level in 208Pb, where the parameters in the

HO potential are determined by fitting the re-

sults from RMF calculation with interactions

NL3.

HO RMF HO RMF

1s1/2 −59.065 −59.090 2s1/2 −39.660 −40.870

3s1/2 −19.892 −18.095 4s1/2 −0.332 −0.545

1d3/2 −40.756 −43.978 2d3/2 −20.504 −18.841

3d3/2 −0.707 −0.122 1d5/2 −42.685 −45.398

2d5/2 −22.108 −20.494 3d5/2 −2.076 −0.709

1g7/2 −22.171 −24.051 2g7/2 −2.053 −0.518

1g9/2 −25.548 −28.086 2g9/2 −4.939 −2.431

1i11/2 −19.745 −2.923 1i13/2 −24.368 −9.588

1p1/2 −50.080 −52.286 2p1/2 −29.994 −29.432

3p1/2 −10.140 −7.531 1p3/2 −51.142 −52.880

2p3/2 −30.867 −30.495 3p3/2 −10.880 −8.296

1f5/2 −31.395 −34.415 2f5/2 −11.172 −9.009

1f7/2 −34.102 −37.022 2f7/2 −13.454 −11.022

1h9/2 −13.143 −13.368 1h11/2 −17.092 −18.866

Here, we discuss only the influences of Σ po-

tential on the symmetry to analyze the correla-

tions between the pseudospin symmetry and spin

symmetry and the parameters of harmonic oscilla-

tor potential. By solving the Dirac equation with

the scalar and vector harmonic oscillator poten-

tial, the variations of the pseudospin energy splitting

(∆E = El̃j=l̃−1/2−El̃j=l̃+1/2) and the spin energy split-

ting (∆E = Elj=l−1/2−Elj=l+1/2) with the parameters

are shown in Fig. 2 and Fig. 3. Because the splitting

of wavefunction is proportional to the area between

the lower components of the doublets, the variations

of the wavefunction splitting with the parameters

are also drawn in Fig. 2 and Fig. 3. In the figures

below, all the pseudospin-orbital partners appear

in the order of the energy 1(1p̃3/2, 1p̃1/2), 2(1d̃5/2,

1d̃3/2), 3(1f̃7/2, 1f̃5/2), 4(2p̃3/2, 2p̃1/2), 5(1g̃9/2, 1g̃7/2),

6(2d̃5/2, 2d̃3/2), 7(1h̃11/2, 1h̃9/2), 8(2f̃7/2, 2h̃5/2),

and 9(3p̃1/2, 3p̃3/2). All the spin-orbital part-

ners appear in the order of the energy 1(1p1/2,

1p3/2), 2(1d3/2,1d5/2), 3(1f5/2,1f7/2), 4(2p1/2,2p3/2),

5(1g7/2,1g9/2), 6(2d3/2,2d5/2), 7(1h9/2,1h11/2),

8(2f5/2,2f7/2), 9(3p1/2,3p3/2), 10(1i11/2,1i13/2),

11(2g7/2,2g9/2), and 12(3d3/2,3d5/2).

Fixing Σ0 , ∆0 and r0, we vary ω to see how

the pseudospin splitting and spin splitting are sensi-

tive to the diffusivity. These dependencies are shown

in Fig. 2. where the horizontal line corresponds

to the zero energy splitting one, i.e., En,l,j=l+1/2 −

En−1,l+2,j=l+3/2 = 0. Below the horizontal line

En,l,j=l+1/2 < En−1,l+2,j=l+3/2, and above the line

En,l,j+l+1/2 > En−1,l+2,j+l+3/2. From Fig. 2(a) it can

be seen that the energy splitting between the dou-

blets is sensitive to the parameter ω, especially for

the doublets with smaller ñ and the doublets with

lower l̃. Meanwhile, we observe that the pseudospin

partners happen to cross with ω increasing. If we la-

bel the crossing point as ωc, there is a critical point

ωc for all pseudospin partners and the ωc is different

from different doublets. With ñ or l̃ increasing, ωc

becomes large. When ω passes through ωc, the en-

ergy splitting will invert its sign. This inversion of

pseudospin partner splittings is observed experimen-

tally and is also mentioned in Refs. [14,15]. It is
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important to note that, once the pseudospin splitting

changes its sign, the effect of increasing ω is to drive

the pseudospin doublets further apart. This system-

atics is consistent with the nonrelativistic prediction

of Ref. [10]. However, in Fig. 2(b), there is no any

critical point ωc for the spin partners and the energy

splitting between the spin doublets is only sensitive

to the parameter ω for the doublets with higher l. In

Fig. 2(c), the pseudospin wavefunction splittings in-

crease with ω increasing, which is in agreement with

the pseudospin energy splitting in Fig. 2(a) for ω > ωc.

In Fig. 2(d), as ω increasing, the spin wavefunction

splittings decrease greatly when ω is relatively small

and increase a little when ω is relatively large. which

is contrary to the variation of the energy splittings

with the parameter ω. This dependence on ω is espe-

cially important when comparing different isotopes,

since, in many cases, it confines the shapes and range

of the mean-field potential that changes most notice-

ably.

Fig. 1. (a) The radial upper components(F (r)) of spin partners for the relativistic HO with the parameters

determined by fitting the results from the RMF calculations with the interactions NL3 for 208Pb. (b) The

same as (a), but for the radial lower components(G(r)) of pseudospin partners. (c) The same as (b), but for

the doublets l̃ =1, l̃ = 2 and l̃ = 3.

Fig. 2. (a) Pseudospin energy splitting as a function of ω for the different pseudospin doublets, where the

horizontal line corresponds to the zero-energy splitting one. (b) Spin energy splitting as a function of ω for

the different spin doublets. (c) Pseudospin wavefunction splitting as a function of ω for the radial lower

components(G(r)) of the different pseudospin doublets. (d) Spin wavefunction splitting as a function of ω

for the radial upper components(F (r)) of the different spin doublets.

A similar trend is seen when we vary the param-

eter r0 and fix all other parameters. In Fig. 3(a),

we observe that the pseudospin energy splitting be-

tween the doublets is also sensitive to the parame-

ter r0. With r0 increasing, the pseudospin doublets

crosses each other and inverts the sign of the energy

splitting. If the cross point is labelled as rc
0, rc

0 is

different from different doublets and increases with

l or n increasing, which is similar to ωc. When r0

passes through rc
0, the energy splitting will invert its

sign. Once the pseudospin splitting changes its sign,

the effect of increasing r0 is to drive the pseudospin

doublets further apart. However, in Fig. 3(b), all the

spin energy splittings are almost invariant with r0

increasing. Furthermore, the splittings of wavefunc-

tion between doublets are also sensitive to the radius.

Fig. 3(c) shows the pseudospin wavefunction split-

tings decrease significantly as r0 increases except for

the doublets 4 and 9 when r0 > 2.4fm. In Fig. 3(d),

the spin wavefunction splittings decrease for the dou-
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blets with lower l, but increase for the doublets with higher l.

Fig. 3. (a) Pseudospin energy splitting as a function of r0 for the different pseudospin doublets, where the

horizontal line corresponds to the zero-energy splitting one. (b) Spin energy splitting as a function of r0 for

the different spin doublets. (c) Pseudospin wavefunction splitting as a function of r0 for the radial lower

components(G(r)) of the different pseudospin doublets. (d) Spin wavefunction splitting as a function of r0

for the radial upper components(F (r)) of the different spin doublets.

Finally, if we keep a,R and ∆0 fixed, but vary

Σ0 to study the sensitiveness of the pseudospin dou-

blets and spin doublets with the depth of the cen-

tral Σ mean field potential, we can conclude that all

the pseudospin doublets and spin doublets are almost

invariant with |Σ0| increasing, because Σ0 is just a

constant added to the potential. Therefore, the pseu-

dospin splittings and spin splittings are all insensi-

tive to the depth of the well, which is in accordance

with Ginocchio predictions for pseudospin symmetry

breaking due to the finiteness of the mean field.

Furthermore, as for a certain nucleus, different

partners are in the same potential. So it is necessary

to analyze the dependence of splittings with quantum

numbers. In Fig. 2(c) and Fig. 3(c), when ñ is fixed,

the pseudospin wavefunction splittings increase with

l̃ increasing, while l̃ is fixed, the pseudospin wave-

function splittings decrease with ñ increasing. In

Fig. 2(b) and Fig. 3(b), when ñ is fixed, the spin

energy splittings increase with l̃ increasing, while l̃ is

fixed, the spin energy splittings decrease with ñ in-

creasing, which is due to the particle distribution rel-

ative to the spin orbital potential[38]. All these show

that both the pseudospin breaking and spin break-

ing are different for different pseudospin partners and

spin partners, respectively. Although some of these

results have been derived in specific relativistic field

theories
[13, 14]

, these results probably are the general

feature of any relativistic model which fits nuclear

binding energies, and hence very likely the general

feature independent of any model.

4 Conclusion

At the present work, the pseudospin symmetry

and the spin symmetry in the relativistic harmonic

oscillator are investigated systemically by solving the

Dirac equation with scalar and vector radial poten-

tials. The symmetry is found to be a good approx-

imation in realistic nuclei such as 208Pb. The pseu-

dospin breaking and spin breaking are shown in cor-

relation with the nuclear mean field which is shaped

by the depth of the well, the harmonic oscillator fre-

quency ω and the distance of well-bottom deviation

from the center. The harmonic oscillator frequency ω

and the parameter r0 are found to play an important

role in the energy splittings and wavefunction split-

tings for all the partners. Their influence on the pseu-

dospin splitting is so sensitive that the energy cross-

ing appears in all the pseudospin partners. Further-

more, the dependence of pseudospin splittings and

spin splittings with quantum numbers are also ana-

lyzed. when l or l̃ increases, the maximum splittings

of all the wavefunction move towards the outside of

the nucleus for the spin doublets n = 1 and pseudospin

doublets ñ = 1. As ñ is fixed, the pseudospin wave-

function splittings increase with l̃ increasing, while l̃

is fixed, the pseudospin wavefunction splittings de-

crease with ñ increasing. When n is fixed, the spin

energy splittings increase with l increasing, while l

is fixed, the spin energy splittings decrease with n

increasing.
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