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Abstract The aim of this paper is to study the influence of the curvature and the compressibility energies

on prescission neutron emission of four neutron-deficient systems: 188Pt, 200Pb, 213Fr and 224Th within a

modified version of the combined dynamical statistical model. The calculated results show that prescission

neutron multiplicities from the modified model are closer to the data compared with the underestimate of the

original one. The physics that the compressibility energy needs to be considered in this work is discussed.
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1 Introduction

Due to nuclear dissipation, the fission process of

hot nuclei becomes slow. As a result, an excess of

prescission neutrons
[1]

, light charged particles
[2]

and

giant-dipole γ rays
[3]

have been observed compared

with expectations from statistical model. Theoreti-

cally, many models considering the nuclear dissipa-

tion have successfully illuminated the phenomena
[4]

.

Besides these, the combined dynamical statistical

model (CDSM) has simultaneously reproduced the

prescission light particle multiplicity and fission prob-

ability in a wide range of excitation energies and fis-

sility of compound nuclei. For some neutron-deficient

systems, however, the prescission neutron multiplici-

ties calculated within the CDSM are smaller in com-

parison with experimental data at low energies
[5]

.

The unique properties of the nucleus determine that

the nuclear friction is likely to stem from nuclear col-

lisions with the nuclear surface, or nucleon-nucleon

collisions in the nuclear surface region
[6]

. So it is

worth paying particular attention to the influence

of those quantities related to nuclear surface prop-

erties on the decay of hot nuclei. Recently, nuclear

liquid-drop model (LDM) was revisited, and an ex-

plicit introduction of the surface-curvature terms was

presented
[7]

. Then the ground-state binding energies

and fission barriers were simultaneously reproduced

with a reasonable precision. This work gives us a hint

to investigate the underestimate of the CDSM for the

prescission neutron multiplicity of neutron-deficient

systems: 188Pt, 200Pb, 213Fr and 224Th by taking cur-

vature and compressibility energies into considera-

tion.

2 The CDSM

The CDSM is a combination of dynamical

Langevin equation and statistical model to describe

the fission process of heavy-ion reaction. In the dy-
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namical branch of the model the evaporation of light

particles and γ-rays is accounted for by coupling a

Monte Carlo technique to the fission dynamics. In

the statistical branch of the model a fission width con-

sistent with the dynamical description is used along

with the standard way of calculating the light parti-

cle emission. In order to elucidate our work, we only

briefly review the CDSM, for more detailed introduc-

tion, please refer to Ref. [5].

Supposing that we deal with overdamped mo-

tion, we use the following one-dimensional reduced

Langevin equation to describe the fission process

dq

dt
=

T

Mβ(q)

∂S(q)

∂q
+

√

T

Mβ(q)
Γ (t), (1)

where q = d/2R0, d is the distance between the cen-

ters of mass of the future fission fragments, R0 is

the radius of the compound radius, M is the in-

ertia parameter, and T is the nuclear temperature.

β(q) is the coordinate-dependent reduced friction pa-

rameter. The so-called SPS-friction
[8]

is used in the

present work. Γ (t) is the Langevin force, which meets

〈Γ (t)〉= 0 and 〈Γ (t)Γ (t′)〉= 2δε(t− t′).

The driving force of Eq. (1) is derived from the

entropy

S(q) = 2
√

a(q)[E∗

tot−V (q)], (2)

where E∗

tot is the total excitation energy and E∗

tot =

Ec.m. + Q with Q being the energy released in fu-

sion, V (q) is potential energy calculated by the LDM.

a(q) is coordinate-dependent level-density parameter

(LDP) which only includes volume and surface con-

tributions of single-particle level density.

When the calculation switches into the statistical

branch of the model, the fission width Γf = ~Rf is

calculated according to

Rf =
Tgs

√

∣

∣S′′

gs

∣

∣S′′

sd

2πMβgs

exp[S(qgs)−S(qsd)]×

2
{

1+erf
[

(qsc−qsd)
√

S′′

sd/2
]}

−1

, (3)

where erf(x) = (2/
√

π)

∫x

0

dt exp(−t2) is the error

function, the subscripts gs, sd and sc mark the po-

sitions of the ground state, the saddle point and the

scission point, respectively. The K-interpretation
[9]

has been used in the present calculation. In the whole

simulation, the decay widths Γν of the emitted light

particles (ν = n,p,α,d) are calculated with the pa-

rameterizations of Blann
[10]

. The width for giant-

dipole γ rays is given by Lynn formula
[11]

.

3 The modified version of the CDSM

(MCDSM)

Compared with the CDSM, we now calculate the

one-dimensional potential V (q) by a truncated and

linearized droplet model (DM)
[12]

, in which the cur-

vature and the compressibility energies are consid-

ered. In addition, the potential V (q) also includes a

rotational energy. Such that it can be read as

V (A,Z,L,q) = a2(1−b3I
2)A2/3(Bs(q)−1)+

a3A
1/3(Bk(q)−1)−a4A

1/3(Bp(q)−1)+

c1Z
2A−1/3(BC(q)−1)+crL

2A−5/3(Br(q)−1), (4)

where the coefficients a2, a3, a4, c1 and cr corre-

spond to the surface, curvature, Coulomb, compress-

ibility and rotational energy, respectively. Their val-

ues are taken from Refs. [12] and [8], respectively.

I = (A − 2Z)/A means the relative excess of neu-

tron. L is the angular momentum. Bs(q) stands for

the shape dependence of the surface energy, namely,

the dimensionless surface area of the deformed nu-

cleus, normalized to that of the spherical configura-

tion. Similarly, Bk(q), BC(q), Bp(q) and Br(q) rep-

resent the shape dependences of curvature, Coulomb,

compressibility and rotational energy, respectively, all

of which are normalized to the values of a spherical

counterpart. In contrast to Hasse’s work
[12]

, for sim-

plicity we take the shape dependence of the Coulomb

redistribution energy as unity now. By virtue of the

Funny-Hill parameterizations {c,h,α}[13]
, Gontchar

et al. presented the expressions of Bs(q) and Br(q)
[14]

,

which are also used in this work. Furthermore, in the

spirit of their work, we draw the following ansatz for

Bk(q)

Bk(q) =







3.556q2−2.667q+1.5, if q < 0.452,

0.416q2+0.237q+1.014, if q > 0.452.
(5)

The relationship Bp(q) = B2
s (q), owing to Hasse

[12]
, is

adopted in the present calculations.
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In Ref. [12], an energy unit and a set of dimension-

less parameters have been defined as the following

E0 = a2(1−b3I
2)A2/3 +a3A

1/3−2a4A
1/3,

ξ = (c1Z
2A−1/3 +2c2Z

2A1/3)/2E0,

η = a3A
1/3/E0, (6)

ζ = c2Z
2A1/3/E0,

χ = a4A
1/3/E0.

Here the coefficient c2 corresponds to the Coulomb

redistribution energy, its value is also taken from

Ref. [12]. According to the similar procedure in

Ref. [8], with Eq. (6) we can arrive at the following

formula for BC(q)

BC(q) = 1+

(1−Bs)+χ(1+Bp−2Bs)+η(Bk−Bs)+BBar

2(ξ−ζ)
, (7)

where BBar is relative fission barrier. The same ap-

proximation for BBar in Ref. [8] is used in this paper.

An example of such a potential V (q) for 224Th

with zero angular momentum is shown in Fig. 1.

Fig. 1. The potentials calculated respectively

within the LDM (dash-dot line) and the DM

(solid line) versus the collective coordinate for
224Th. The ground state situation, the saddle

point (DM: solid straight line; LDM: dash-dot

straight line) and the scission point are also

depicted.

In order to consistently investigate the effect of

the curvature and the compressibility energies on the

decay of hot nuclei, a correct choice of the asymp-

totic values of the LDPs is necessary. Such that, the

coordinate-dependent parameter including a contri-

bution of the curvature component of single-particle

level-density may be written as

a(q) = avA+asA
2/3Bs(q)+akA

1/3Bk(q), (8)

where av, as and ak are the coefficients corresponding

to the volume, surface and curvature component of

the single-particle level density, respectively. Three

sets of the coefficients are listed in Table 1. The def-

initions of Bs(q) and Bk(q) are in coincidence with

those of Eq. (4). It needs to note that they aren’t

taken again as unity now, which is different from Töke

and Swiatecki’s
[16]

and Reisdorf’s
[18]

works. The ab-

solute values of LDPs are shown as a function of the

atomic number in Fig. 2(a). The coordinate depen-

dences of these LDPs for mass number A=216 are

displayed in Fig. 2(b).

Table 1. The theoretical values for volume-,

surface- and curvature-component of the

LDPs for a deformed nucleus in Eq. (8).

author av/MeV−1 as/MeV−1 ak/MeV−1

Ignatyuk et al.
[15]

0.073 0.095

Töke and Swiatecki
[16]

0.069 0.213 0.385

Mughabghab and

Dunford
[17] 0.076 0.180 0.157

Fig. 2. (a) The different LDP (at the ground

state) are shown as functions of mass num-

ber A (Ign: squares
[15]

; TS: up-triangles
[16]

;

MD: circles
[17]

) in comparison with A/8 (solid

line), A/10 (dash line) and A/12 (dot line);

(b) The coordinate dependences of LDP are

displayed and also compared with the values

for A/8, A/10 and A/12 for A=216. The lines

are guides to the eyes.

4 Numerical results and discussions

Before the calculated results are displayed, it

needs to emphasize that new Standard Parameter Set
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(SPS) in the MCDSM is constitute of DM-potential,

MD-LDP and SPS-friction compared with the old

one including the LDM-potential, Ign-LDP and SPS-

friction in the CDSM.

Figure 3 shows the prescission neutron multiplici-

ties calculated within the framework of the MCDSM

and the CDSM, respectively, for four neutron-

deficient systems: 188Pt, 200Pb, 213Fr and 224Th. The

experimental data are taken from Ref. [1]. It is seen

that the results calculated within the MCDSM are

closer to data compared with those within the CDSM.

Besides that, one can find that the multiplicity calcu-

lated within the MCDSM is larger than that within

the CDSM. In particular, the MCDSM reproduces

well in contrast to the underestimation of the CDSM

for 16O+197Au → 213Fr and 16O+208Pb → 224Th. The

satisfactory agreement for the reaction 19F+169Tm →
188Pt calculated within the MCDSM is also found in

Fig. 3(a). While for 19F+181Ta → 200Pb system in

Fig. 3(b), the MCDSM reproduces well at lower en-

ergies. At relatively higher energies, however, the

MCDSM overestimates slightly compared with the

underestimation of the CDSM. Compared with the

identical underestimation from the CDSM, one can

see that the agreement for the heavier nuclei is better

than for the lighter nuclei from the MCDSM.

Fig. 3. The calculated prescission neutron mul-

tiplicities νpre for four neutron deficient sys-

tems 19F+169Tm →
188Pt (a), 19F+181Ta

→
200Pb (b), 16O+197Au →

213Fr (c) and
16O+208Pb →

224Th (d) within the modified

CDSM model, are displayed and in contrast

to that within the CDSM model (dash lines).

Experimental data (circles and squares) are

taken from Ref. [1].

Table 2. The calculated reaction Q-values (unit: MeV), particle binding energies Bi (i =n,p,α) (unit: MeV),

the potential energies (unit: MeV) for the four systems mentioned above within the DM, are compared with

those correspondents from the LDM.

DM LDM
systems

Q Bn Bp Bα V Q Bn Bp Bα V

188Pt −9.9 7.38 5.55 −2.89 18.88 −26.07 8.51 5.42 −4.01 17.36
200Pb −13.08 6.97 5.69 −3.41 13.27 −29.81 8.15 5.42 −4.60 12.90
213Fr −19.60 6.88 5.24 −4.46 7.46 −38.65 8.06 3.40 −5.66 8.00
224Th −29.28 6.27 5.83 −4.48 5.63 −46.64 7.56 5.30 −5.81 6.19

Table 2 lists the reaction Q-values, particle bind-

ing energies Bi (i = n,p,α), potentials calculated

within the DM for four systems mentioned above

to compare with the corresponding results from the

LDM. One can see that the Q-values increase, how-

ever, the fission barriers change slightly. These

two kinds of actions together with the stronger

coordinate-dependent LDP induce the entropy to rise.

Due to this, from Eq. (3), we can deduce that the

fission width in the MCDSM will get enhanced com-

pared with that in the CDSM. While at the same

time, the particle emission width does hardly change

according to Blann’s and Lynn’s formulas. Thus the

fission mode gets strengthened, while the particle

emission modes will be weakened relatively. How-

ever, the increasing neutron binding energies and the

decreasing ones for proton and alpha will counteract

the behavior to some extent, which will result in fa-

cilitating neutron emission and further inhibiting the

emission of proton and alpha particle. In addition, we

observe from Fig. 1 that for 224Th the length of the

descent from saddle to scission becomes longer, fur-

thermore, the slope of the potential becomes flatter,

all of which will cause the time traveling from sad-

dle to scission to get longer. The situation is similar

for the other three systems. The behavior is in favor
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of the emission of light particle and will balance the

proportion of fission to some extent. Then, on the

whole, the prescission neutron multiplicity becomes

larger than that calculated by the CDSM, and closer

to the data. It is interesting to point out that the

phenomenon for 213Fr and 224Th is more evident than
188Pt and 200Pb. On the one hand, it is because that

the fission barriers for the former systems descend

compared with the rise of the latter. On the other

hand, our calculation reveals that the phenomenon

also results from the protracted length of the descent

from saddle to scission for the former is more evident

than for the latter.

Fig. 4. The deformation dependences for sur-

face energy: squares, Coulomb energy: circles,

curvature energy: up-triangles, compressibil-

ity energy: down-triangles and rotational en-

ergy: diamonds, respectively. The lines are

guides to the eyes.

It can be seen from Eq. (4) that the curvature

energy and the compressibility energy are all propor-

tional to A1/3. But they have different deformation

dependences. According to Eqs. (5) and (7) and the

relation Bp(q) = B2
s (q) as well as the expressions of

Bs(q) and Br(q) drawn by Gontchar et al.[5, 14], in

Fig. 4 we present the deformation dependences for

the five kinds of energies. It can be observed that,

with increasing q, Bs(q), Bk(q) and Bp(q) become

stronger; however BC(q) and Br(q) become weaker.

Although the coefficient of the compressibility energy

is smaller than that of the curvature energy, we can

observe from Fig. 4 that the compressibility energy

has the strongest dependence on the shape of nu-

cleus. Hence, in order to completely investigate the

influence of the surface properties of nuclei on the dy-

namical deexcitation process of hot nuclei, it is nec-

essary to consider together the two kinds of energies.

As has been pointed out by Pomorski and Dudek,

the compressibility energy also offsets the contribu-

tion of the curvature energy to binding energy and

fission barrier
[7]

, which will place a influence on the

prescission neutron multiplicity. Without the com-

pressibility energy, the binding energy will increase a

little, which prohibits slightly the emission of the light

particle. Besides that, without the energy, it also re-

sults in the fission barrier to rise then be in favor of

the emission of the light particle. Then it can be de-

duced that the two opposite behaviors will induce a

little increase of prescission light particle multiplic-

ity. Moreover, from Eq. (8) we also learn that the

a(k) is a compromise coefficient owing to the inverse

contributions of two kinds of DM correction energies.

If the compressibility energy isn’t taken into accout,

it needs a unreasonable a(k) to reproduce the data

well, then it also bears up to consider the two kinds

of energies at the same time.

5 Summary

Within the framework of the modified CDSM, we

calculated the prescission neutron multiplicities for

four neutron-deficient systems: 188Pt, 200Pb, 213Fr

and 224Th. The present calculated results are closer

to the data compared with the underestimate of the

CDSM because the curvature energy and the com-

pressibility energy are taken into consideration. Due

to the stronger coordinate dependence and its signif-

icance in choosing the level density parameter, the

compressibility energy must be involved in the calcu-

lation.
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5 Mavlitov N D, Fröbrich P, Gontchar I I. Z. Phys., 1992,
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16 Töke J, Swiatecki W J. Nucl. Phys., 1981, A372: 141—150

17 Mughabghab S F, Dunford C. Phys. Rev. Lett., 1998, 81:

4083—4086

18 Reisdorf W. Z. Phys., 1981, A300: 227—238

ÇU9Ø Ué"¥f�CXÚäc¥fu��K� *

f=�
1;1)

�y²
1,2

1 (H®�ÆÔnX H® 210008)

2 (H®¥���ÆênX H® 210029)

Á� ^U?
�ÄåÆ�ÚO�(Ü��., ïÄ
ÇU9Ø Ué4�"¥f�CXÚ: 188Pt, 200Pb,
213FrÚ 224Th�äc¥fu��K�. O�(Jw«^U?�.���äc¥fõ5�'�5�.�$��

��C¢�êâ. éu8có��ÄØ U��Ï?1
?Ø.

'�c ÇU Ø U "¥f�CXÚ U?�Ýëê äc¥fõ5

2006 – 06 – 01 Âv, 2006 – 07 – 14 Â?Uv

* I[g,�ÆÄ7(10535010)]Ï

1)E-mail:myc@lnnu.edu.cn


