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Abstract The previous experiments which provide information on the ψ(3770) to non-DD decays are re-

viewed. Three approaches of searching for the non-DD decays are discussed in detail. It is also pointed out

that the search for the non-DD decays of the ψ(3770) is very important for the understanding of the dynamics

of charmonium decays.
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1 Introduction

The lowest charmonium resonance above the

charmed particle production threshold is ψ(3770)

(shortened as ψ′′) which provides a rich source of

D0D0 and D+D− pairs, as anticipated theoretically[1].

However, the non-DD decays of the ψ(3770) were

also expected theoretically and searched for experi-

mentally almost two decades ago. The OZI violation

mechanism[2] was utilized to understand the possi-

bility of the non-DD decays of the ψ(3770)[3], and

the pioneer experimental investigations of the non-

DD decay modes could be found in Ref. [4].

After a period of silence, the study of the non-DD

decays of the ψ′′ gets renaissance as more and more

data are collected at ψ′′ by BES-Ⅱ and CLEOc[5].

Extensive studies have been made for exclusive non-

DD decay channels[6—10], of which the most promi-

nent one is the hadronic transition of ψ′′→ J/ψπ+π−

once sought by Mark-Ⅲ[4]. Recently both BES and

CLEOc collaborations reported their measurements

for this channel[11, 12], which are in marginally agree-

ment with each other. However, except for J/ψπ+π−

final state, no statistically significant signals of the

non-DD decays at ψ′′ have been presented up till now.

One possible reason is that the existing data samples

are still not large enough to search for the channels

of such small branching fractions.

Besides the searches for the exclusive modes, there

is the search for inclusive decays. In fact, the in-

dication of a substantial non-DD decays of the ψ′′

originally caught attention from the comparison of

the cross sections of the inclusive hadrons and DD

at the ψ′′ peak. Table 1 summarizes the measure-

ments of the resonance parameters and the observed

cross section of the inclusive hadronic decay, and Ta-

ble 2 summarizes the measurements of the DD cross

section reported by BES-Ⅱ[22] and CLEOc[23] collabo-

rations using either double-tag or single-tag method.

The simple average of the values in the two tables

gives σobs(ψ′′)' 7.75nb and σ(DD)' 6.27nb, respec-

tively, with the difference of about 1.5nb (about 19%

of the total cross section of the ψ′′ production), which

implies the non-DD decays of the ψ′′ are important.

However, the existence of substantial non-DD decays

is not unambiguous due to the poor statistics of the
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data samples and the complexity of the analysis. In

addition, results from different experiments are con-

sistent with each other only marginally. Moreover,

for inclusive measurement, the contribution of the

non-DD decays has been neglected in previous exper-

iments in measuring the ψ′′ resonance parameters.

Table 1. Resonance parameters and total cross sections at the ψ′′. Γψ′′ is the full width, Γee the partial width

to electron pairs, σobs the observed cross section at resonance peak, Rflat R value to describe the continuum

contribution, σBorn Born order cross section. It should be noticed that the uncertainty of σBorn is obtained

from those of the quantities used for calculation without considering the correlation among them.

experiment/ Mψ′′/ Γψ′′/ Γee/ σobs/

accelerator (MeV/c2) (MeV/c2) (eV/c2)
σobs/nb Rflat σBorn/nb

σBorn

LGW/SPEAR
[13]

3772±6 28±5 370±90 10.3±2.1 ∼ 2.8? 13.6±4.1 0.75

DELCO/SPEAR
[14]

3770±6 24±5 180±60 ∼ 6.1? ∼ 2.5? 7.7±3.0 0.79

MARKⅡ/SPEAR
[15]

3764±5 24±5 276±50 9.3±1.4 2.22±0.06 11.9±3.3 0.78

CBAL/SPEAR
[16]

3768±2 34±8 283±70 6.7±0.9 2† 8.6±2.9 0.78

BESⅡ/BEPC
[17]

3773±1 26±4 247±35 ∼ 6.4? 2.44±0.08 9.8±2.0 0.65

BESⅡ/BEPC
[18, 19]

3772 23.2 − 7.7±1.1 ∼ 2.16? 12.1±1.9‡ 0.64

? The value estimated from the corresponding figure provided by literature or thesis, only for reference.
† The R is only treated as constant in the fitting.
‡ Absent values are adopted from PDG for calculating σBorn.

Table 2. Comparison of cross sections σ(DD)≡σ(e+e−→ψ′′→DD), in nb. Note that σ(D0) is defined to be

twice σ(D0D
0
) and σ(D+) is twice σ(D+D−).

collaboration
√

s/GeV σ(D+) σ(D0) 2σ(DD)

MARKⅢ
[20]

3.768 3.35+0.44
−0.36±0.24 4.48+0.33

−0.29±0.37 7.83+0.55
−0.46±0.52

MARKⅢ
[21]

3.768 4.2±0.6±0.3 5.8±0.5±0.6 10.0±0.8±0.8
√

s/GeV σ(D+D−) σ(D0D
0
) σ(DD)

BESⅡ
[22]

3.773 2.52±0.07±0.23 3.26±0.09±0.26 5.78±0.11±0.38

CLEO
[23]

2.58±0.15±0.19 3.90±0.42±0.28 6.48±0.44±0.49

Besides the experimental motivations, there are

interests to look into this problem from the theoret-

ical point of view. In Ref. [18], it is estimated that

at most 600keV (∼ 2.5%) of the ψ′′ total width of

(23.6±2.7)MeV is due to the radiative transition, and

perhaps as much as another 100keV (∼ 0.4%) is due

to the hadronic transition to J/ψππ. All these to-

gether are far from accounting for a deficit of 19% of

the total ψ′′ width.

In a most recent paper[24], based on the avail-

able experimental information of J/ψ and ψ′ decays,

it is estimated that the charmless decay of the ψ′′

by virtue of the S- and D-wave charmonia mixing

scheme[25] could be as large as 3.1MeV or 13% of the

total decay width of ψ′′. By charmless decay, we ex-

clude those decay modes with either open or hidden

charm. If we take into account also the charmonium

transition contributions of 3%[18] (2.5% for radiative

transition and 0.34% for J/ψππ), the total non-DD

decay of ψ′′ as large as 16% is conceivable in the 2S-

1D mixing scenario.

With the expected more data at ψ′′ from the run-

ning CLEOc, it is feasible to search for the possible

large non-DD decays. Furthermore, we notice that

the accurate determination of certain exclusive final

state can supply the knowledge of the phase between

the S-wave and D-wave matrix elements. Such in-

formation can provide some clues concerning the dy-

namics of the OZI suppressed decays of charmonium.

In this paper, we concentrate on the experimen-

tal aspects of the non-DD decays of the ψ′′. In the

following sections, we discuss the exclusive, the quasi-

inclusive and the inclusive methods for the non-DD

searching, especially, we shall expound some of the

technique details in the handling of the experimen-

tal data which were overlooked in previous measure-

ments.
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2 Exclusive method

One may measure the branching fraction of each

individual charmless decay mode. If the ψ′′ is pro-

duced in e+e− collision, the non-resonance contin-

uum amplitude could be important, its contribu-

tion, and its interference with the ψ′′ decay ampli-

tude must be considered in the analysis of the ex-

perimental data[26]. This was discussed in detail for

the vector-pseudoscalar (VP) modes[27], in which the

observed cross section depends on the interference

pattern between the ψ′′ amplitude and the contin-

uum amplitude. If the phase between the strong and

electromagnetic interactions is −90◦, as suggested in

Ref. [28], such interference is destructive for ρπ, ωη,

ωη′, K∗+K−, b1π and K+K− modes but constructive

for φη, φη′ and K∗0K0 modes. Destructive inter-

ference between the resonance and continuum means

that the observed cross section on top of the reso-

nance could be smaller than the continuum cross sec-

tion. The experimental results on ρπ and ωη modes[8]

demonstrate this interference pattern.

As a matter of fact, many subtleties concerning

the efficiency determination and Monte Carlo simu-

lation have to be taken into consideration in order to

acquire correct and accurate measurement of the ex-

clusive decay at the ψ′′ peak in e+e− experiments. A

detailed discussion of such measurement is presented

in Ref. [29].

3 Quasi-inclusive method

The exclusive method gives the branching frac-

tion of each individual charmless decay mode, but

provides no information on the total fraction of the

non-DD decays. In this section, we develop a quasi-

inclusive method, by which we can derive the total

non-DD decay branching fraction from the inclusive

measurement of certain particle or final state.

Fig. 1. Two paths of ψ′′ decays to final state f .

Certain final state f may be produced from the di-

rect ψ′′ decays, and/or from the cascade DD decays,

as shown in Fig. 1.

The following quantities are needed to describe

such a process in detail

(1) B(ψ′′ → f): the total branching fraction of

final state f in ψ′′ decay;

(2) B(ψ′′ → DD): the branching fraction of DD

in ψ′′ decays;

(3) F (DD → f): the branching fraction of final

state f in DD decay;

(4) B(DD → f): the branching fraction of final

state f from non-DD ψ′′ decay (direct ψ′′ decays).

So we have the following relation

B(ψ′′→ f) = B(ψ′′→DD) •F (DD→ f)+

B(DD→ f) . (1)

According to the above relation, in order to find out

B(ψ′′ → DD), or equivalently [1−B(ψ′′ → DD)],

we need to know B(ψ′′ → f), F (DD → f) and

B(DD → f). So we first discuss how to determine

these branching fractions experimentally.

3.1 Determining F (DD→ f)

The D meson decay branching fraction (Fi) was

originally measured through the production (σD
•Fi),

and then converted into D decay branching fraction

(Fi) by employing the cross section σD at the ψ′′

peak[13, 30]. Unfortunately, as indicated in Table 1,

there are large discrepancies among the measure-

ments of σD. Furthermore, in previous measurements

the ψ′′ was assumed solely or substantially decayed

into DD, which is questionable. We will return to this

point in detail in Section 4.

Twenty years ago, a new technique was devel-

oped by MARKⅢ group[31] to derive the D meson

branching fraction without relying on the measure-

ment of the D-production cross section. To determine

the individual branching fraction (Fi), together with

the number of produced DD pairs (N), the corrected

number of single tags (Si) and double tags (Dij) are

employed in a χ2 minimization fit, using the following

expressions:
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Si = 2NFiεi−2N
∑

j

FiFjα
i
ij ;

Dij =





2NFiFjεij (i 6= j) ,

NF 2
i εii (i= j) ,

(2)

where εi is the efficiency for reconstructing a single

tag in the ith D decay mode, εij is the efficiency for

reconstructing a double tag for DD decay mode i and

j, and αi
ij is the efficiency for reconstructing a sin-

gle tag of mode i while simultaneously reconstructing

the entire event as a double tag of mode i and j. The

second term in the expression for Si removes from the

single-tag sample those tags which also appear in the

double-tag sample. This subtraction leaves the two

samples independent and eliminates the directly cor-

related errors. Comparing the number of observed

single-tag (Si) events with double-tag (Dij) events

yield the branching fraction of decay mode j without

referring to the production cross section. In prac-

tice, the Si serves to determine the relative branching

fractions, while the Dij sets the absolute scale of the

branching fractions.

By virtue of the approach introduced above, we

obtain F (DD→ f) for a final state f without mea-

suring the production cross section. In fact, any mea-

sured results of F (DD→ f) by the approach can be

used for the following analysis even if the results are

from different experimental groups.

3.2 Determining B(ψ′′ → f) and B(DD→ f)

The B(ψ′′→ f) is obtained by scan experiments.

Avoiding abstract, we take the inclusive KS final state

as an example to explain the scan process.

Usually at least two scan curves are needed, one is

the inclusive hadron final state, from which we deter-

mine the total decay width of the ψ′′ (Γt); the other is

the inclusive KS final state (KS plus anything), from

which we determine the partial decay width of this

inclusive mode. The ratio of these two widths gives

the branching fraction B(ψ′′→KS +anything).

At the energy in the vicinity of the ψ′′, besides

the ψ′′ resonance, there are other cross sections due

to the non-resonance continuum process as well as

the tails of the J/ψ and ψ′, which together account

for a large proportion of the measured cross section

at the ψ′′ peak. According to the decay topology,

the inclusive hadron events are divided into two cat-

egories, the DD events and the DD-less final states.

Here we coin a word “DD-less final states” to de-

pict all the processes which do not go through D

or D, including non-resonance process, tails of J/ψ

and ψ′, and the non-DD decays of the ψ′′. By non-

DD decay, we mean the ψ′′ decays which do not go

through D or D. Here the correct Monte Carlo sim-

ulation deserves special attention. For example, the

non-resonance continuum process can be simulated

by Lund model[32]; while the J/ψ, ψ′ tails and DD de-

cay by the Monte Carlo which describes J/ψ, ψ′ and

D decays respectively[33, 34]. The synthetic hadron ef-

ficiency εhad is expressed as

εKS
had =

εKS
DL

•σKS
DL +εKS

DD
•σKS

DD

σKS
DL +σKS

DD

, (3)

where ε and σ denote the efficiencies and the corre-

sponding cross sections, the subscript DL indicates

the DD-less decay, while DD the DD decay, the sub-

script KS represents the inclusive hadron final state

containing KS particle. However, σDL and σKS
DD are to

be determined from experiment. Fortunately, accord-

ing to Eq. (3), what we need to know is the ratio of

σDL to σKS
DD, which could be acquired experimentally

as explained below.

Figure 2 shows the momentum distributions of the

inclusive KS events due to the DD (histogram) and

the DD-less (dots with error bar) decays, which are

simulated by DDGEN and Lund generators, respec-

tively. With the two generators, we obtain the effi-

ciencies εDL and εKS
DD. For the real data sample, its

momentum distribution is the synthetic one of the

DD and the DD-less decays with certain proportion

of each. We fit the data distribution with those of

Monte Carlo distributions as shown in Fig. 2, and

then obtain the numbers of the observed events of

these two processes, which are denoted as nDL and

nKS
DD. Utilizing the relation

n =Lσε (L : experiment luminosity) ,

we get
nDL

•εKS
DD

nKS
DD

•εDL

=
σDL

σKS
DD

. (4)
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In short, we determine B(ψ′′→ f) by scan exper-

iment. As to B(DD→ f), we notice that in Fig. 2,

most of the momentums from DD decay are less than

1GeV, so a requirement of the momentum greater

than 1.1GeV eliminates all the DD decay event, while

leaving the events from DD-less decay. Using such

events, we obtain another scan curve. Fit this curve

together with the curve of the total inclusive hadrons,

we determine B(DD→ f). This process is similar to

the determination of B(ψ′′ → f), but only one effi-

ciency εDL is needed.

Fig. 2. KS momentum distributions: histogram

for inclusive KS final state from DD decays;

dots with error bars for inclusive KS final state

from DD-less decays.

3.3 Deriving B(ψ′′→DD)

Since B(ψ′′→ f), F (DD→ f) and B(DD→ f)

are obtained experimentally, by solving Eq. (1), we

get B(ψ′′→DD), and then acquire the non-DD de-

cay branching fraction [1−B(ψ′′→DD)].

Next we understand Eq. (1) from the physics point

of view. We introduce a new quantity defined as

F (DD→ f)=
B(DD→ f)

1−B(ψ′′→DD)
, (5)

which is the ratio of the branching fraction of non-DD

decay for the final state f to that of the total non-DD

decays. Then Eq. (1) reads

B(ψ′′→ f) = B(ψ′′→DD) •F (DD→ f)+

[1−B(ψ′′→DD)] •F (DD→ f). (6)

We chose B(ψ′′ → f) as ordinate, and B(ψ′′ →
DD) as abscissa, which varies from 0 to 100%. For

certain final state f , B(ψ′′→ f) corresponds to the

horizontal line, as shown in Fig. 3, where the shaded

band denotes the uncertainty of B(ψ′′ → f). If

B(ψ′′ → DD) = 0, then B(ψ′′ → f) = F (DD →
f), which means all events of final state f coming

from non-DD decay; if B(ψ′′ → DD) = 100%, then

B(ψ′′ → f) = F (DD → f), which means all events

of final state f coming from DD decay, or equiva-

lently the complete absence of the contribution from

non-DD decay. Without losing generality, we assume

that F (DD→ f) > F (DD→ f), then we obtain an

upward line in the coordinate, as shown in Fig. 3.

Fig. 3. Diagram for the determination of B(ψ′′

→DD). The horizontal line indicates a certain

B(ψ′′ → f) with shaded band as its uncer-

tainty; the skew line is drawn based on infor-

mation of B(DD → f) and B(DD → f); the

arrow indicates the B(ψ′′→DD) determined

from experiment with hatched area as its un-

certainty.

Similarly, if we assume that F (DD→ f) < F (DD→
f), we obtain a downward line in the coordinate.

The intersection point gives rise to the determina-

tion of B(ψ′′ → DD), which is denoted by the ar-

row in Fig. 3. The hatched area indicates the un-

certainty of B(ψ′′ → DD), which is due to the in-

tersection of the skew line with the uncertain band

of B(ψ′′ → f). Here we notice that the smaller

slope of skew line in Fig. 3 corresponds to the longer

intersection line with the uncertainty band, which

means the larger uncertainty in the determination of

B(ψ′′ → DD). On the contrary, if the slope of the

skew line is larger, we obtain comparatively smaller

uncertainty on B(ψ′′ → DD). In another word, to
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obtain B(ψ′′ → DD) as accurate as possible, we se-

lect those final states which have as large as possible

the difference between F (DD→ f) and F (DD→ f).

One special case is that F (DD→ f) = F (DD→
f), according to Eq. (6), we have B(ψ′′ → f) =

F (DD → f) = F (DD → f). Under such circum-

stances, we cannot get any information about the to-

tal non-DD decay. In another word, if the scan ex-

periment obtains the B(ψ′′ → f), which is equal to

F (DD→ f), we could neither confirm nor deny the

existence of non-DD decay. Another special case is

F (DD→ f)= 0 or F (DD→ f)= 0. For example, for

baryon anti-baryon (BB) final state, which does not

come from DD decays, F (DD→ f) = 0. Under such

circumstances Eq. (1) becomes

B(ψ′′→ f)= [1−B(ψ′′→DD)] •F (DD→ f) . (7)

According to the above equation, B(ψ′′ → f) =

F (DD → f) for B(ψ′′ → DD) = 0 while B(ψ′′ →
f) = 0 for B(ψ′′ → DD) = 1. So mathematically,

when B(DD→ f) = 0, Eq. (7) provides a downward

line in coordinate as shown in Fig. 4, where the only

point of intersection is at B(ψ′′ → DD) = 0. Physi-

cally, at the start point of abscissa in Fig. 4, Eq. (7)

merely gives a fact that all events of the final state f

come from non-DD decay since its decay through DD

is forbidden. As for other values of B(ψ′′→DD), we

could not get any information because the two lines

do not intersect.

Fig. 4. Diagram for the determination of B(ψ′′

→ DD). The horizontal line indicates a cer-

tain B(ψ′′ → f) with shaded band as its

uncertainty; the solid skew line corresponds

to F (DD → f) = 0 for certain final state

f while the dashed skew line corresponds to

F (DD→ f)= 0 for certain final state f .

If the uncertainties due to F (DD → f) and

F (DD → f) are taken into account, the skew lines

in Figs. 3 and 4 become bands, just like the horizon-

tal ones. Under such circumstances, all discussions

above are valid except for the uncertainty of the de-

termined B(ψ′′→DD), which becomes larger.

4 Inclusive method

In this section, we first retrospect the previous

scan experiments, and point out drawbacks of these

experiments, and then put forth a new method which

determines the inclusive non-DD decay directly with

small systematic errors.

4.1 Scan experiment

Figure 5 draws diagrammatically the observed

cross section in the vicinity of the ψ′′ resonance cal-

culated with parameters provided by PDG[35]. The

total observed cross section σtot is usually expressed

as

σtot =σNR +σJ/ψ +σψ′ +σψ′′ , (8)

which contains four parts: the non-resonance cross

section σNR, the radiative tails of J/ψ (σJ/ψ) and

ψ′ (σψ′), and the ψ′′ resonance cross section (σψ′′).

The non-resonance cross section is usually expressed

in terms of R value and the µ pair cross section at

Born order as σNR = R •σ(e+e−→µ+µ−). The Breit-

Wigner formula is adopted to depict the resonances

of the J/ψ, ψ′ and ψ′′, where the total decay width

of the ψ′′ is energy dependent:

σψ′′(Ec.m.)=
12πΓeeΓψ′′(Ec.m.)

(E2
c.m.−M2

ψ′′)2 +Γ 2
ψ′′(Ec.m.)M2

ψ′′
, (9)

with

Γψ′′(Ec.m.)= CΓ

[
p3

D0

1+(rpD0)2
+

p3
D±

1+(rpD±)2

]
, (10)

where p is the D0 or D± momentum, r is the classical

interaction radius, and CΓ is defined as follows:

CΓ ≡ Γψ′′(Mψ′′)[
p3

D0

1+(rpD0)2
+

p3
D±

1+(rpD±)2

]∣∣∣∣
Ec.m.=Mψ′′

. (11)

Here Γψ′′(Mψ′′) is the ψ′′ total decay width given

by PDG[35]. The radiative correction scheme used by

SPEAR experiment, is based on the work of Bonneau

and Martin[36] and that of Jackson and Scharre[37].
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Fig. 5. The observed cross section in the vicin-

ity of the ψ′′ resonance calculated with param-

eters provided by PDG. The total observed

cross section σtot is conventionally divided

into four parts: the cross section from non res-

onant contribution σNR, from radiative tails

of J/ψ (σJ/ψ) and ψ′ (σψ′), and cross section

from resonance ψ′′ (σψ′′).

The former only calculated to α3 order which is in-

sufficient for resonances; while the latter made some

mistakes[38, 39]. The drawbacks due to the treatment

of the radiative correction with these two schemes

were studied for Z in Ref. [38] and for narrow reso-

nances of ψ and Υ families in Ref. [39]; but no such

study on ψ′′ has been conducted so far. BES treats

the radiative correction based on the structure func-

tion approach which achieves 0.1% accuracy[40]. The

effect of the radiative correction can be seen from the

ratio between the observed cross section σobs and the

Born order cross section σBorn, which is defined as

σBorn =
12πΓee

M2
ψ′′Γψ′′

. (12)

From the last column of Table 1, we see that the treat-

ment of the radiative correction was consistent among

different experiments at SPEAR. However, the res-

onance parameters from different experiments differ

significantly. The reason remains unknown.

Another problem in previous analyses[13—16] is

that the non-DD branching ratio was neglected in the

fitting of the ψ′′ resonance curves. Since light hadrons

have much lower thresholds than DD, a larger non-

DD branching ratio affects both directly the shape

of the resonance curve and indirectly through the

energy-dependent total width. Specially, taking into

account the non-DD decays, Eq. (10) is revised by

including another term, that is

Γψ′′(Ec.m.)=

C ′
Γ

[
p3

D0

1+(rpD0)2
+

p3
D±

1+(rpD±)2
+Cnon−DD

]
, (13)

where Cnon−DD is proportional to the partial width of

the non-DD decays, and

C ′
Γ ≡

Γψ′′(Mψ′′)[
p3

D0

1+(rpD0)2
+

p3
D±

1+(rpD±)2
+Cnon−DD

]∣∣∣∣
Ec.m.=Mψ′′

.

(14)

With the Cnon−DD term in the expression for Γψ′′ , the

fitting of the resonance curve to extract the resonance

parameters is done together with the fitting of the

DD or the non-DD cross section. In this procedure,

the non-DD decay branching fraction is extracted to-

gether with the resonance parameters.

4.2 Leading particle method

At first sight, it seems easy to measure the DD

cross section because the DD decay has distinctive

event topology and can be selected without ambigu-

ity. But it is impractical for the scan experiment due

to its low statistics. So we turn to the measurement

of the DD-less cross section, and take advantage of

the salient kinetic feature of DD-less decays, as men-

tioned in Section 3.2 for final state with KS. This ki-

netic feature holds for all kinds of final states, which

can be seen from a rough estimation. Since the mass

of the ψ′′ is just above the DD, the D and D are

almost static. Their decay products have momen-

tum less than 932.3MeV/c, which is half of the D0

mass. So the particles with momentum greater than

this value must come from processes other than D or

D decays. With this distinction between DD decay

and DD-less decay, we do not need the particle iden-

tification, but merely select the particle having the

largest momentum, which is called the leading par-

ticle in a hadronic event. Fig. 6 shows the Monte

Carlo simulation of the momentum distributions for

the leading particle from DD (denoted by histogram)

and DD-less decays (denoted by dot with error bar).

It can be seen that the leading particles from DD de-
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cay all have momentum less then 1.1GeV. So a cut

of p < 1.1GeV on momentum eliminates almost all

events from DD decays, while the surviving ones must

come from DD-less decays. This gives a direct mea-

surement of DD-less decay without the need to tag

certain particle in the final states. We refer to this

method as the leading particle method.

Fig. 6. Momentum distributions of the leading

particle: histogram for DD events; dots with

error bars for DD-less events (not normalized).

The arrow indicates the cut at 1.1GeV.

In the appendix, we present the formulas for ψ′′

scan. Based on these formulas, the expected cross sec-

tions in the vicinity of ψ′′ resonance are depicted and

drawn in Fig. 7. The upper part of the graph is the

total inclusive hadron cross section; while the lower

part are the curves of cross sections from DD-less de-

cays, with the assumption of non-DD decay branching

fraction to be 0, 10% and 30%, respectively.

Fig. 7. The cross section in vicinity of the

ψ′′ resonance calculated with parameters pro-

vided by PDG. In the top graph, the curve is

the total cross section. In the bottom graph,

only DD-less decay cross section is drawn,

with the assumption of non-decay fraction as

0, 10% and 30%, respectively.

The prominent advantage of this method is the

high sensitivity and good precision. Since the frac-

tion of the non-DD decay is determined by the ratio

of two curves from the same scan measurement, most

of the systematic errors are canceled out, a small sys-

tematic uncertainty is expected from this method.

4.3 Comments

Recently, CLEOc reported the measurement of

non-DD cross section[41]: σnon−DD = (−0.01 ±
0.08+0.41

−0.30)nb, which means the non-DD decays, even

exist, are less than 0.69nb at 90% confidence level,

or correspond to an upper limit of 10.8% of the to-

tal decay width at 90% confidence level, if the total

ψ′′ cross section is taken from the result by the same

group σψ′′ =(6.38±0.08+0.41
−0.30)nb[41].

Since non-DD searching is highly important and

very interesting, it is good to have other measure-

ments by alternative methods to confirm this result.

In addition, in the CLEOc analysis, the interference

between resonance and continuum due to electromag-

netic interaction is taken into account. To improve

the accuracy further, other interference effects such

as that between different resonances, need to be con-

sidered. The interference between strong decay pro-

cess and non-resonance continuum process may also

give a non-vanishing contribution due to SU(3) flavor

symmetry breaking. Although one may expect these

interference effects to be negligible, more careful stud-

ies are needed to reduce the systematic uncertainties.

We leave such meticulous analysis to a separate work

in the future. Here we merely point out that the in-

terference effect considered in Ref. [41] does not affect

the measurement for non-DD decays by scan method

suggested by us here as long as the Γee of ψ′ is treated

as a free parameter in the data fitting. This is due to

the fact that the interference term varies smoothly in

the vicinity of ψ′′ peak.

5 Summary

In this paper, we put forth three methods for the

searching for the non-DD decays of the ψ′′ in e+e−

experiments: the exclusive, the quasi-inclusive and

the inclusive methods.
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First, for the exclusive method, we call attention

on the contribution of the non-resonance virtual pho-

ton, and more importantly, its interference with the

resonate decay amplitude. Besides the confirmation

of the existence of the non-DD decays of the ψ′′, the

measurement of the exclusive channel is very impor-

tant for the interpretation of the “ρπ puzzle” in J/ψ

and ψ′ decays and the determination of the phase be-

tween the strong and electromagnetic interactions in

such decays.

Second, for the inclusive method, we propose a

new, so-called leading particle method. This method

tags a large fraction of the non-DD decays (∼ 10%)

without DD contamination, thus it is more sensitive

than the other methods in the determination of the

total branching fraction of the non-DD decays of the

ψ′′.

As to the quasi-inclusive method, it can be used as

a cross check for the measurement of the total branch-

ing fraction of the non-DD decays.
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Appendix A
Cross section at ψ′′ mass

The total cross section at the ψ′′ peak can be expressed as the sum of all possible resonances and non-resonance con-

tributions. Due to Initial State Radiation (ISR) and other effects, such as energy spread, what is obtained experimentally

is the so-called observed cross section instead of the one at Born order.

A remark of symbol is in order here. In the following text, we use symbol W to denote the C.M. energy of the

colliding beams, which is also expressed by Ec.m. in the literature. The half of W indicates the beam energy, often

written as Ebeam = W/2, while the square of W indicates the energy transform, often written as s = W 2 in theoretical

papers.

A1 ISR correction

The ISR correction is calculated by the structure function approach
[40, 42, 43]

, which yields the accuracy of 0.1%. In

this scheme, the radiatively corrected cross section is expressed as

σ(W 2) =

∫1−W2
m/W2

0

dx σ̃[W 2(1−x)]F (x,W ) (A1)

where Wm is the cut-off of the invariant mass in the event selection, and

σ̃(W 2)=
σB(W )

|1−Π(W 2)|2 ,

with σB(W ) the Born order cross section and Π(W 2) the vacuum polarization. In Eq. (A1)

F (x,W ) = βxβ−1δV +S(W )+δH(x,W ) , (A2)

with

β =
2α

π

(
ln

W 2

m2
e

−1

)
,

δV +S(W ) = 1+
3

4
β+

α

π

(
π2

3
− 1

2

)
+β2

(
9

32
− π2

12

)
,

δH(x,W ) = −β
(
1− x

2

)
+

1

8
β2

[
4(2−x) ln

1

x
− 1+3(1−x)2

x
ln(1−x)−6+x

]
.

Here the conversion of bremsstrahlung photons to real e+e− pairs is included in the cross section which is the usual

experimental situation. Thus there is cancellation between the contributions of virtual and real e+e− pairs in the leading

term
[43]

.

The physical cross section at Born order of the process e+e−→ Res.→ f (where f denotes a certain kind of final

states) is expressed by the Breit-Wigner formula

σBW(W ) =
12πΓ 0

eeΓf

(W 2−M2)2 +Γ 2M2
,

where M and Γ are the mass and total width of the resonance; Γ 0
ee and Γf are the partial widths of the e+e− mode

and the final state f respectively. Here Γ 0
ee describes the coupling strength of the resonance to e+e− through a virtual

photon. For example, in potential model, Γ 0
ee is related to the wave function at the origin ψ(0) in the way

Γ 0
ee =

4α2Q2
q|ψ(0)|2
M2

,

where Qq is the charge carried by the quark in the quarkonium and α is the QED fine structure constant. Since the decay

of a quarkonium 1−− state to e+e− pair is through a virtual photon, there is always vacuum polarization associated
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with this process. So the experimentally measured e+e− partial width, denoted explicitly as Γ exp
ee , is related to Γ 0

ee by

the expression

Γ exp
ee =

Γ 0
ee

|1−Π(M2)|2 .

We follow the convention of Ref. [39] which is adopted by PDG. In this convention Γee means Γ exp
ee . For resonances,

if they decay predominantly to light hadrons, with threshold (Wm) far less than the data taking energy (W ), that is

W−WmÀΓ , the integral of Eq. (A1) is insensitive to Wm, because the Breit-Wigner formula behaves like a δ function.

One can put the upper limit of the integration to 1, so the radiatively corrected resonance cross section is

σ(W 2)=

∫1

0

dx F (x,W )σBW[W 2(1−x)] , (A3)

with

σBW(W ) =
12πΓeeΓf

(W 2−M2)2 +Γ 2M2
. (A4)

A2 Observed cross section

The total observed cross section σtot at the ψ′′ mass is usually expressed as

σtot = σNR +σJ/ψ +σψ′ +σψ′′ , (A5)

which contains four parts: the cross section from non-resonant contribution σNR, from radiative tails of J/ψ (σJ/ψ) and

ψ′ (σψ′), and the cross section from resonance ψ′′ (σψ′′).

A2.1 Non-resonance section

The non-charm contribution is conventionally expressed by R value

σNR = R •σ(e+e−→µ
+

µ
−) ,

with

σ(e+e−→µ
+

µ
−) =

4πα

3W 2
.

Here R indicates the contribution from light quarks1) (u, d and s).

A2.2 Tails due to J/ψ and ψ′

The resonances such as J/ψ and ψ′, are narrow with widths from tens to hundreds keV, while the beam energy spread

of e+e− colliders is at the order of MeV. If the resonance width is comparable or smaller than the beam energy spread,

the observed resonance cross section is the one by Eq. (A1) folded with the beam energy spread function G(W,W ′),

which is usually taken as a Gaussian:

G(W,W ′) =
1√
2π∆

exp

[
− (W −W ′)2

2∆2

]
,

with ∆ the standard deviation of the Gaussian distribution, or the beam energy spread physically. However, when the

experiment energy is far from the resonance peak, the effect of the energy spread is insignificant and can be neglected2).

As a matter of fact, Eq. (A1) can be further simplified. Notice that J/ψ and ψ′ are narrow resonances, that is to

say, comparing with the resonance mass M , the decay width Γ could be treated as Γ → 0. So the Breit-Wigner formula

transforms into a δ function:

σBW(W )=
12πΓeeΓf

(W 2−M2)2 +Γ 2M2

Γ→0−−−→ 12π2ΓeeBf

M
•δ(W 2−M2) ,

where Bf = Γf/Γ . Then the integral in Eq. (A3) gives

σ(W 2)∼= 12π2ΓeeBf

MW 2
•F (x,W )

∣∣∣
x=1−M2

W2

,

1) In the literature before, Rcharm is introduced to depict the contribution from process e+e−→ γ∗→DD, However, for DD

final state, this process is indistinguishable from that of ψ′′ decay, therefore is unnecessary.

2) In our fitting program, when W > MR+0.2(GeV), the effect is neglected. So for our ψ′′ scan [W ⊂ (3.7,3.9)GeV], the effect

of energy spread is taken into consideration for ψ′, but not for J/ψ.
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for the cross section due to the tails of the J/ψ and ψ′.

A2.3 Cross section of ψ′′

According to Eq. (A3), the radiatively corrected cross section of ψ′′ is expressed as

σψ′′(W )=

∫1

0

dxF (x,W )σND[W 2(1−x)]+

∫1−
4m2

D0
W2

0

dxF (x,W )σDD[W 2(1−x)] ,

where F (x,W ) is given in Eq. (A2), while

σND(W 2) =
12πΓeeΓND

(W 2−M2
ψ′′)

2 +Γ 2
ψ′′(W )M2

ψ′′
, (A6)

and

σDD(W 2) =
12πΓeeΓDD(W )

(W 2−M2
ψ′′)

2 +Γ 2
ψ′′(W )M2

ψ′′
. (A7)

The energy dependent total width of ψ′′ is composed of two parts

Γψ′′(W ) = ΓND +ΓDD(W ) , (A8)

while the width listed by PDG is often defined as

Γ ψ′′ ≡Γψ′′(W = Mψ′′) . (A9)

Using definition of Eq. (A9), we further factorize the two decay widths in Eq. (A8) as follows:

ΓND = f •Γ ψ′′ , (A10)

or

f =
ΓND

Γ ψ′′
,

that is to say, f is actually the branching fraction of the non-DD decays of ψ′′. For ΓDD, we have

ΓDD(W )= (1−f) •Γ ψ′′ •θ(W −2mD0) •

rD •
p3
D0

1+(rpD0)2
+θ(W −2mD±) •

p3
D±

1+(rpD±)2

rD •
p3
D0

1+(rpD0)2
+

p3
D±

1+(rpD±)2

, (A11)

where r is the classical interaction radium; rD, whose value is around 1.4, is the ratio of D0D0 to D+D− production at

ψ′′ peak. p is the D0 or D± momentum, reads explicitly as

pD0 =
1

2

√
W 2−4m2

D0 ,

pD± =
1

2

√
W 2−4m2

D± ;

and p is the D0 or D± momentum at the resonance peak, viz.

pD0 ≡ pD0

∣∣∣
W=Mψ′′

=
1

2

√
M2

ψ′′−4m2
D0 ,

pD± ≡ pD±
∣∣∣
W=Mψ′′

=
1

2

√
M2

ψ′′−4m2
D± .

A2.4 Cross section of the leading particle

The observed cross section at ψ′′ mass after requiring the momentum of the leading particle within certain ranges,

which is denoted by σl.p. also contains four parts, i.e.

σl.p. = σNR +σJ/ψ +σψ′ +σl.p.
ψ′′ .

Except for the last term, the other three parts are exactly the same as those of σtot in Eq. (8). As to σl.p.
ψ′′ , the radiatively

corrected cross section reads

σl.p.
ψ′′ (W )=

∫1

0

dxF (x,W )σND[W 2(1−x)] ,
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where F (x,W ) is given in Eq. (A2), while σND is given by Eq. (A6).

A2.5 Cross section of the DDDDDD decays

The observed cross section of the DD decays of ψ′′, denoted as σDD, which only comes from the resonance decays,

is expressed as

σDD
ψ′′ (W )=

∫1−
4m2

D0
W2

0

dx F (x,W ) σDD[W 2(1−x)] ,

where F (x,W ) is given in Eq. (A2), while σDD(W 2) is by Eq. (A7).
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