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Abstract We review in this paper the research status on testing the completeness of Quantum mechanics

in High Energy Physics, especially on the Bell Inequalities. We briefly introduce the basic idea of Einstein,

Podolsky, and Rosen paradox and the results obtained in photon experiments. In the content of testing the

Bell inequalities in high energy physics, the early attempts of using spin correlations in particle decays and

later on the mixing of neutral mesons used to form the quasi-spin entangled states are covered. The related

experimental results in K0 and B0 systems are presented and discussed. We introduce the new scheme, which

is based on the non-maximally entangled state and proposed to implement in φ factory, in testing the Local

Hidden Variable Theory. And, we also discuss about the possibility of realising it to the tau charm factory.
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1 Introduction

Quantum Mechanics (QM) is one of the most im-

portant foundations of modern physics. However, the

philosophic and physical debates on this fundamental

theory are still continuing ever since its first presence.

Among the various critiques on QM, the most impor-

tant and famous one is what Einstein and his collab-

orators had proposed on whether the QM is a com-

plete theory or not. Einstein, Podolsky, and Rosen

(EPR)
[1]

questioned the completeness of QM by us-

ing a so-called Gedanken experiment which was then

named the EPR paradox. In Section 2 we introduce

the EPR paradox in details, the explanation for the

paradox in local hidden variable theory (LHVT), and

the Bell theorem, which exhibits the contradiction of

LHVT with QM and presents the non-locality nature

of QM as the foundation of the modern quantum in-

formation theory. In Section 3 we introduce some

optical experiments in testing the Bell inequalities.

And, in Section 4 we turn to the related studies in

the high energy physics regime. The last section is for

conclusions for the past researches in testing the Bell

Inequalities, and for expectations for future study on

this kind of issues, especially in high energy physics.

2 From EPR to Bell inequalities

2.1 The EPR paradox

In 1935, Einstein, Podolsky, and Rosen demon-

strated in a work
[1]

that quantum mechanics can not

provide a complete description for the “physical real-

ity” of two spatially separated but quantum mechan-

ically correlated particle system. In the paper they

described the following criterion of “physical reality”:

if, without in any way disturbing a system, we can

predict with certainty (i.e., with probability equal to

unity) the value of a physical quantity, then there ex-

ists an element of physical reality corresponding to

this physical quantity. Then they proposed the nec-
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essary condition for theories to be complete: every

element of the physical reality must have a counter-

part in the physical theory.

People noticed that the idealized experiment

(Gedanken experiment) proposed by EPR is not suit-

able to realize in practical experiment. It requires to

configure an entangled state, which is of the eigen-

state of relative position and total momentum. How-

ever, this is not practical. Moreover, even if it could

be constructed, such a state cannot be a stationary

state. It will only be in transitory existence, which

makes the EPR argument fail.

Bohm
[2]

proposed (desgined) a more realistic ex-

periment (Gedanken experiment) which can illustrate

the EPR paradox. He considered the two-particle

spin-one-half system in spin singlet and zero angu-

lar momentum. In spin space, the wave function of

this state can be expressed as

|Ψ〉= (1/
√

2)
(
|+〉A|−〉B−|−〉A|+〉B

)
, (1)

where the single particle states |+〉 and |−〉 denote

“spin up” and “spin down” in certain coordinate

frame. Assuming the two particle interaction does

not involve spin-dependent term, particles are allowed

to separate apart with the total spin of the system

invariant, for example along the y direction. When

they are separated well beyond the range of interac-

tion, we can measure the z-component of the spin of

particle A. Due to angular moment conservation at

all time, we can predict that the z-component of spin

B must have the opposite value. In the meantime,

because the spin singlet has spacial rotation invari-

ance, the same thing happens when we measure the

x-component of spin of particle A. Since the two par-

ticles are far apart with each other, the locality con-

dition guarantees that the particle B does not know

what happens to A while the measurement performs.

Therefore, it shows that the B particle spins along x

and z axes should be both physical realities. In QM

the spin operators along different axes do not com-

mute and thus can not simultaneously have definite

values. Therefore, they can not be simultaneously

the physical realities. Hence, Einstein concluded that

QM must be incomplete.

Bohr contested not the EPR demonstration but

their premises. His point of view is that an element

of reality is associated with a concretely performed

act of measurement. We can not perform the mea-

surement along different axes simultaneously on par-

ticle A, so the spins of the particle B along different

axes do not need to be simultaneously physical real-

ities. However, as Einstein questioned that these ar-

guments make the reality of particle B depend upon

the process of the measurement performed on the first

particle. According to Einstein: “no reasonable defi-

nition of reality could be expected to do this”.

2.2 Bell inequalities

To avoid the EPR paradox, it might be a reason-

able choice to postulate some additional ‘hidden vari-

ables’, which presumably will restore the complete-

ness, determinism and causality to the theory. This

kind of theories are named the local hidden variable

theories. Nevertheless, once von Neumann, based on

some axioms
[3]

, demonstrated that it is impossible to

construct such a hidden variable theory
[4]

reproduc-

ing all the results of QM. It was later on discovered

that one of the von Neumann’s axioms in getting

his conclusion is too much restrictive. And, indeed

some counter examples were constructed in the two

dimensional space
[5]

. That means the LHVT model

can produce all the QM predictions but without fulfil

von Neumann’s restrictive hypotheses. Nevertheless,

there remains certain difference in between QM and

LHVT. In 1964 Bell showed
[6]

that in realistic LHVTs

the two particle correlation functions satisfy a set of

Bell inequalities (BI), whereas the corresponding QM

predictions may violate these inequalities in some re-

gion of parameter space. The definitions of corre-

lation in LHVT and QM respectively, according to

Bohm, read as:

E(a,b) =

∫
dλρ(λ)A(a,λ)B(b,λ) , (2)

E(a,b) = 〈ψ|σ • a⊗σ •b|ψ〉=−a •b . (3)

Here, ρ(λ) is the distribution of hidden variable re-

gardless of whether λ is a single variable or a set, or

even a set of functions. These variables can be ei-

ther discrete or continuous. a and b indicate spin

directions. The original inequality obtained by Bell
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is

|E(a,b)−E(a,c)|−E(b,c) 6 1 , (4)

where a,b,c mean three different spin directions. In

1969, Clauser, Horne, Shimony, and Holt (CHSH)
[7]

generalized the inequality (4) to a more practical one,

i.e.

S= |E(a,b)−E(a,b′)|+E(a′,b)+E(a′,b′) 6 2 . (5)

A similar inequality to CHSH was derived by Bell in

1971
[8]

, read as

S= |E(a,b)−E(a,b′)|+|E(a′,b)+E(a′,b′)|6 2 . (6)

The correlation function E in above inequalities is

defined as

E(a,b) = P++(a,b)−P+−(a,b)−
P−+(a,b)+P−−(a,b) , (7)

where P±± =N±±(a,b)/N , N is the total number of

particle pairs, and N++(+−) means that two particle

has the same (opposite) spin directions. To suffice for

experimental test, the total number of particle pair

emission, the N , should be known. However, in real

practice the probability cannot be measured without

either destroying or depolarizing the particle pairs.

In 1974 Clauser and Horne (CH)
[9]

deduced an in-

equality, for which the upper limit is experimentally

testable without knowing the N . That is

−1 6 P++(a,b)−P++(a,b′)+P++(a′,b)+

P++(a′,b′)−P++(a′,∞)−P++(∞,b) 6 0, (8)

where P++(∞,b) denotes the probability of finding

a pair of particles with no polarization detection on

one side. It is easy to find that the CH inequality

(8) is consistent with inequality (6). Provided that in

an experiment with two detectors and double channel

analyzers, one can get three similar sets of inequali-

ties like Eq. (8) with different indices P−+,P+−,P−−.

Multiplying the inequalities with P−+ and P+− by −1

and combining these four inequalities we can obtain

the inequality (6).

It is generally realized that unlike the von Neu-

mann’s mathematical results these inequalities can be

reached in experiment in testing the validity of QM

in comparison with LHVTs.

2.3 Generalizations of Bell theorem

Bell theorem reveals peculiar properties of quan-

tum “entangled” states that were previously not ap-

preciated. Many a generalization of Bell inequality

aiming at getting optimal violations was developed.

Better inequalities (inequalities with larger violation

and/or wide range of parameter space for violation)

are of both experimental and theoretical interest. For

further development on this issue, one may either cre-

ate new inequalities, or explore the non-local char-

acter of some particular quantum states. Of course

these two seemingly different investigation schemes

are correlated.

Braunstein and Caves
[10]

made an extension of the

inequality (6). They added two kinds of Eq. (6) up

in different directions and got:

S = |E(a,b′′)+E(b′′,a′′)+E(a′′,b′)+

E(b′,a′)+E(a′,b)−E(b,a)|6 4 . (9)

Usually, combining two inequalities directly may lead

to a new inequality with weaker constraint than be-

fore. However Ref. [10] demonstrate that the adding

chain, like in IE (9), may even lead to stronger quan-

tum violations. For simplicity, we reexpress the com-

bined N equalities of Ref. [10] in a different form:

SN =N |E(π/N)|6N−2 , (10)

where N > 3. It is very interesting to notice that

when N = 3, IE (10) corresponds to the maximal vi-

olation of IE (4); N = 4 corresponds to the maximal

violation of IE (6); and N = 6 corresponds to the

maximal violation of IE (9). Taking π/N = θ, we

have

|E(θ)|6 1−2θ/π , (11)

which is similar to Eq. (25) of Ref. [11]. Braunstein

and Caves also put forward the idea of information-

theoretic Bell inequalities
[12]

. The information-

theoretic Bell inequalities was derived from the clas-

sical Shannon entropy and are violated by the quan-

tum mechanical EPR pairs. This makes it possible to

use the information theory to study the separability

and nonlocality of quantum states. For more details,

readers can refer to references, i.e., Refs. [13—16].
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In 1989, Greenberger, Horne, and Zeilinger

(GHZ)
[17, 18]

showed that for certain three and four

particle entangled states there is a conflict between

QM prediction and local realism even for perfect

correlation, which means that the LHVT and QM

can both make definite but opposite predictions. In

1992 Hardy proved
[19]

, without using inequalities, this

kind of confliction may occur in any non-maximally

entangled state composed of two two-level subsys-

tems. Later on Hardy’s argument was improved by

Jordan
[20]

. He demonstrated that there exist four

projection operators with eigenvalues of either 0 or

1 satisfying

〈FG〉= 0 , 〈D(1−G)〉= 0 , (12)

〈(1−F )E〉= 0 , 〈DE〉> 0 , (13)

which are in contradiction with LHVTs. In above

and following equations, the alphabetic letter on the

left side represents the projector of particle 1, and

the right one for particle 2. Eqs. (12) and (13) can

be easily understood, i.e., if D= 1 then G= 1 accord-

ing to the second equality of Eq. (12). And, similarly

if E = 1 then F = 1 according to the first equality

of Eq. (13). From the second inequality (13) we can

infer that it is possible for D and E to be 1 simul-

taneously, and so are the F and G. However, this

is apparently in confliction with what the first equal-

ity of Eq. (12) tells. Jordan also demonstrated in a

converse way
[20]

that for any choice of four different

measurements, there exists a state satisfying Hardy’s

argument. Garuccio in 1995 found
[21]

that the con-

tradiction between QM and LHVT can be embedded

in CH inequalities of (8), i.e.

〈DE〉6 〈FG〉+〈D(1−G)〉+〈(1−F )E〉 . (14)

Along Hardy’s logic, Cabello[22] formulated a GHZ

type of proof involving just two observers. Ref. [23]

demonstrated that for the state that is a product of

two singlet states, there exists an operator satisfying

FQM = 〈Ψ |O|Ψ〉= 9 and FLHVT 6 7, which is obviously

inconsistent. For recent developments on this respect

one can find in a series of works of Cabello’s
[24—26]

.

Actually, investigations on non-locality and the

violation of Bell inequalities are not so transparent

as explained above, especially when the mixed states

and multi-particle high dimension systems are con-

cerned. Since it is not our main concern of this ar-

ticle, we suggest interested readers refer to a recent

review
[27]

and references therein.

3 Bell inequalities in optical experi-

ment

Many experiments in regard to the Bell inequal-

ities have been carried out by using the entangled

photons. In the optical experiment the correlation of

polarizers in orientations a and b is defined as follows:

E(a,b) =

N++(a,b)+N−−(a,b)−N+−(a,b)−N−+(a,b)

N++(a,b)+N+−(a,b)+N−+(a,b)+N−−(a,b)
,

(15)

where N+− is the coincidence rate of photon polariza-

tions; + for parallel and − for perpendicular to the

chosen direction. Of the various optical experiments,

one of the important ones was carried out by Aspect

et al.
[28]

, in which the photons are generated from the

atomic cascade radiation J = 0 → J = 1 → J = 0. In

the experiment they use the two-channel polarizers

in orientations a and b, and a fourfold coincidence

counting system by which the four coincidence rates

N±±(a,b) can be measured in a single run, and they

directly obtained the polarization correlation E(a,b).

Their measurement gave

Sexp = 2.697±0.015 . (16)

This result is in excellent agreement with the pre-

dictions of quantum mechanics, which, under the

conditions of their polarizer efficiencies et al., gives

SQM = 2.7 ± 0.05. This experiment has been per-

formed with the static setups in which polarizers are

fixed for the whole duration of a run. And, later

on an important improvement of this kind of experi-

ment were performed by the same group of people
[29]

,

in which they added two optical switches that can

be randomly chosen in between two directions. All

these advanced measurements violate the upper limit

of Bell’s inequality and in good agreements with the

QM calculation.

Some other relevant and important progresses in

this direction were realized by using the parametric
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down-conversion (PDC)
[30, 31]

technique in generat-

ing the entangled photon pairs. An ideal experiment

with two channel polarizers, which randomly reori-

ented during the propagation of photons, has been

fulfilled in reality
[32]

. The necessary space-like sep-

aration of the observation was achieved by keeping

sufficiently large physical distance between measur-

ing stations(Alice and Bob was spatially 400m apart

in the experiment), by the ultra-fast and random set-

ting of the analyzers, and by completely independent

data registration. The experiment finally gave

Sexp = 2.73±0.02 (17)

for 14700 coincident events collected in 10s. This cor-

responds to a violation of the CHSH inequality for 30

standard deviations assuming only the statistical er-

rors exist.

Recent measurements on the Bell inequality viola-

tion are realized through the multi-photon entangled

states
[33, 34]

. This kind of experiments were carried on

by testing the multi-photon generalizations of the Bell

theorem
[35]

. And, the experimental results comply

with the quantum mechanics prediction while con-

tradicting with the LHVTs prediction by more than

8 standard deviations
[35]

.

The non-maximally entangled Hardy state was

also realized in optical experiment
[36]

. The mea-

surement further confirmed the QM but disregarded

the local realistic results
[36]

. A generalization
[37]

of Cabello’s argument in Ref. [23] was put into

experiment
[38]

by virtue of the two photon four di-

mensional entanglement (two polarization and two

spatial degrees of freedom). The observable FQM =

〈Ψ |O|Ψ〉 = 8.56904±0.00533 indicated a violation of

LHVTs by about 294 standard deviations.

In all, for now all of the known experimen-

tal results
[28, 29, 32, 35, 36, 38]

in photon experiment are

substantially in consistent with the prediction of the

standard QM. However, still the low detection effi-

ciency harasses people in this kind of experiments.

Although the situation is improved in the case of

PDC, in practice the detection efficiency is still quite

low, abut 5%
[32]

. As aforementioned the total number

of emission is very important to the setup of corre-

lation. To make these experimental measurements

logically comparable to Bell inequalities, one needs

to make supplementary assumptions. That is, the

ensemble of actually detected pairs is independent of

the orientations of the polarimeters, and the detected

photon pairs is a fair sample of the the ensemble of all

emitted pairs. In the multi-photon case the similar

detection loophole appears as well
[27]

.

4 Bell inequalities in high energy

physics

4.1 Motivations and some early attempts

People notice that the former experiments in test-

ing the completeness of QM are mainly limited to the

electromagnetic interaction regime, i.e., by employ-

ing the entangled photons, no matter whether the

photons are generated from atomic cascade or PDC

method. Considering the fundamental importance of

the concerned question, to test the LHVT in exper-

iment with massive quanta and with other kinds of

interactions is necessary
[39]

.

To this aim, the spin singlet state, as first advo-

cated by Bohm and Aharonov
[2]

to clarify the EPR

argument, is exploited in experiment at the begin-

ning. Lamehi-Rachti and Mitting
[40]

performed an

experiment in the low energy proton-proton scatter-

ing at Saclay tandem accelerator. Their measurement

of the spin correlation of protons gave a good agree-

ment with what the QM tells.

As early as 1960s the EPR-like features of the

K0K̄0 pair in the decays of JPC = 1−− vector particles

were noticed by some authors[41—44]. In the early at-

tempts of testing LHVTs through the Bell inequality

in high energy physics, people focused on exploiting

the nature of particle spin correlations
[39, 45, 46]

. Typ-

ically, in Ref. [45] Törnqvist suggested to measure the

BI through the following process:

e+e− →ΛΛ̄→π− pπ+ p̄ . (18)

Two different decay modes of ηc →ΛΛ̄ and J/ψ→ΛΛ̄

are considered by Törquist. In Ref. [11] the matrix

element for ηc or J/ψ decay generically takes the fol-

lowing form:

A∝
∑

ij

〈χp|Ma|χΛi
〉sij〈χ†

Λ̄j
|M †

b |χ†
p̄〉 . (19)
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Here, Mi represents the interaction which induces the

hadronic transition of Λ to final states. sij represents

spin structure of the charmonium. After taking the

standard procedure, one obtain the transition proba-

bility. For example, for ηc decay it reads:

R(â, b̂)∝ 1+α2â • b̂ , (20)

where α denotes the Λ decay asymmetry parameter;

â and b̂ are unit vectors along the π+ and π− mo-

menta in Λ̄ and Λ rest frame, respectively. Törnqvist

argued that apart from the constant α2 and the sign

before â • b̂, Eq. (20) is in equivalence with Eq. (3)

obtained in measuring the spin correlation in the

Bohm’s Gedanken experiment. Here, the directions

of the pion momentum â and b̂ take the place of the

spin-analyzing directions of the polarimeters.

For J/ψ decays,

R(â, b̂) ∝ 2

(
1− k2

E2
Λ

sin2 θ

)
(1−α2ânb̂n)+

(k2/E2
Λ)sin2 θ[1−α2(â • b̂−2âxb̂x)] . (21)

The DM2 Collaboration
[47]

observed 7.7 × 106J/ψ

events with about 103 being identified as from process

J/ψ → ΛΛ̄ → π−pπ+p̄. The experimental measure-

ment unfortunately does not give a very significant

result
[11]

due to the insufficient statistics.

A similar process was suggested by Privitera
[46]

,

i.e.,

e+e− → τ+τ− →π+ν̄τπ
−ντ . (22)

In analogy with what in charmonium decays, in this

case the expected correlation rate is given by

N(p̂1, p̂2)∝ 1− 1

3
p̂1

• p̂2 , (23)

where p̂1 and p̂2 are unit vectors in the momentum

directions of π+ and π−, respectively. Hereby, the

strong spin correlation between two τ’s reveals the

nonlocal nature of the EPR argument. The subse-

quent τ decay works as a spin analyzer, and the cor-

relation is transferred to the decay products.

The above-mentioned designs for experimentally

measuring the violation of BI are delicate and attrac-

tive, however, people found that such proposals pos-

sess controversial assumptions
[48]

. They all assume

that the decay matrix elements contain the nonlo-

cal correlations, i.e., Eqs. (20), (21), (23). However,

there is no dichotomic observable which can be di-

rectly measured in real experiment. The momentum

of pion is a continuous variable, and different mo-

menta are compatible, i.e. [(P̂
π
+)i, (P̂

π
−)j ]=0

[39, 48]
.

Thus a LHVT can be constructed in respect of all the

results from QM, and hence there may be no violation

of the Bell inequality at all.

4.2 Testing correlation by virtue of quasi-

spin

In testing the LHVTs in high energy physics, us-

ing the “quasi-spin” to mimic the photon polarization

in the construction of entangled states is a practical

way. For example, for kaon the quantum number of

strangeness S, which takes the number of 1 or −1,

can play the role of spin. Several groups suggested

to study the K0K̄0 system in the φ factory to test

the LHVT (for details, see Ref. [49] and references

therein). Up to now, there are two different ways to

proceed in the “quasi-spin” scheme. In the first way,

one fixes up the quasi-spin, but leaves the freedom in

time. For example, one measures the Flavor Taste in

different decaying time on each side, then the time

differences plays the role of polarization angles. The

second one is to leave the freedom in quasi-spin but

to fix the measuring time. In this case we measure

the different eigenstates of the particles at the same

time on each side, then the different eigenstates play

the role of polarization angles.

A typical process which produces entangled state

in K0K̄0 system is through e+e− → φ→ K0K̄0. The

wave function of the JPC = 1−− particles, like φ which

decays into K0K̄0, can be formally configured as
[50]

:

|φ〉= (1/
√

2)
{
|K0〉|K̄0〉−|K̄0〉|K0〉

}
. (24)

Similar expressiones apply to Υ(4S) → B0B̄0,

Υ(5S)→B0
s B̄

0
s , and ψ(3770)→D0D̄0 cases.

In the following we explain the above-mentioned

techniques in a bit details. First, we consider the sit-

uation in which the meson state takes place of spin

polarization discussed in the preceding sections. For

kaon system, there are three different kinds of eigen-

states, those are: the mass, CP , and strangeness.

We define the effect of ĈP̂ operators acting on the



1092 p U Ô n � Ø Ô n ( HEP & NP ) 1 31 ò

K0 and K̄0 states, like

ĈP̂ |K0〉 = |K̄0〉 , (25)

ĈP̂ |K̄0〉 = |K0〉 , (26)

up to an arbitrary phase. With this choice in phase

the CP eigenstates can be expressed as:

|K0
1 〉 = (1/

√
2){|K0〉+ |K̄0〉} , (27)

|K0
2 〉 = (1/

√
2){|K0〉−|K̄0〉} . (28)

And correspondingly the mass eigenstates are:

|KS〉 = (1/N){p|K0〉+q|K̄0〉} , (29)

|KL〉 = (1/N){p|K0〉−q|K̄0〉} , (30)

where p= 1+ε, q= 1−ε, and N 2 = |p|2+|q|2. The ε is

the normal CP violation parameter. With the above

knowledge, Eq. (24) can be reexpressed as:

|φ〉 = (1/
√

2){|K2〉|K1〉−|K1〉|K2〉} , (31)

|φ〉 = (N 2/2
√

2pq){|KL〉|KS〉−|KS〉|KL〉} . (32)

To test the LHVT in the kaon system, it is more

convenient to use Wigner’s inequality which can be

derived from Eq. (4)
[49]

. That is

P (a,b) 6P (a,c)+P (c,b) , (33)

where a,b,c are the same as in Eq. (4) and Ps rep-

resent the probabilities with the same subscripts in

Eq. (8) suppressed. According to Ref. [51], we choose

the following states as the quasi-spin:

a = |KS〉 , (34)

b = |K0〉 , (35)

c = |K1〉 . (36)

Then, the inequality (33) turns to be

P (mS,S= +1) 6P (mS,CP+)+P (CP+,S= +1) ,

(37)

where P (mS,S = +1) means the coincident rate of

finding KS on one side and K0 on the other side simul-

taneously. The same notation applies to P (mS,CP+)

and P (CP+,S = +1). Substitute Eqs. (27)—(30)

into Eq. (37), the inequality becomes
[51]

Re{ε}6 |ε|2, (38)

which is obviously violated by the experimental mea-

surements on ε
[52]

. It is interesting to notice that as

b taken to be |K̄0〉, (33) becomes −Re{ε} 6 |ε|2[53]
,

and it will be always true. As noticed by Ref. [49],

since the inequality (38) is realized at the beginning

time, while the entangled kaon pairs are not well sep-

arated, what it tests is only the contextuality rather

than non-locality.

As mentioned above, we can also choose different

time to measure the final states, the kaons, on each

side. For illustration, we choose the quantum number

of Strangeness as the quasi-spin in our consideration,

but neglect the CP violation effect, which in some

sense is a good approximation.

With the time evolution, the initial entangled

state, like in Eq. (24), becomes:

|Ψ(tl, tr)〉 =
1√
2

{
e−i(mLtl+mStr)e−

ΓL
2

tl−
ΓS
2

tr |KL〉|KS〉−

e−i(mStl+mLtr)e−
ΓS
2

tl−
ΓL
2

tr |KS〉|KL〉} . (39)

Here in the above expression, the small letters l and

r denote the left side and the right side, suppose we

name the two entangled particles to be left and right

without losing generality. Choosing different mea-

surement time for two sides, we have the coincident

rates
[54]

P (K0, tl;K
0, tr) = P (K̄0, tl; K̄

0, tr) =

(1/8)
{
e−ΓLtl−ΓStr +e−ΓStl−ΓLtr −

2e−
ΓL+ΓS

2
(tl+tr) cos(∆m∆t)

}
, (40)

P (K0, tl; K̄
0, tr) = P (K̄0, tl;K

0, tr) =

(1/8)
{
e−ΓLtl−ΓStr +e−ΓStl−ΓLtr +

2e−
ΓL+ΓS

2
(tl+tr) cos(∆m∆t)

}
. (41)

Here, P (K0(K̄0), tl;K
0(K̄0), tr) represents the proba-

bility of finding K0(K̄0) on the left side at time tl and

K0(K̄0) on the right side at time tr. The expectation

value of correlation is

E(tl, tr) =−cos(∆m∆t)e−
ΓL+ΓS

2
(tl+ts) . (42)

Inserting this correlation directly in the CHSH in-

equality, one can immediately find that the violation

of inequality depends on the ratio of x = ∆m/Γ
[49]

,

where the ∆m characterizes the strangeness oscilla-

tion and the Γ characterizes the weak decays. For

the case of small x, which means that the oscilla-

tion is dominated by weak decays, there will be no

violation of CHSH inequalities. Among the known
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neutral mesons, only B0
SB̄

0
S system has a big enough

experimental value of x, and hence the violation of

inequalities might be found there
[49]

.

The EPR-type strangeness correlation in the pro-

cess pp̄ → K0K̄0 has been tested at the CPLEAR

detector
[55]

at CERN. In the experiment the K0K̄0

pairs were created in the JPC = 1−− configuration.

The wave function at initial time tl = tr = 0 is

|Ψ(0, 0)〉= (1/
√

2)
[
|K0〉l|K̄0〉r−|K̄0〉l|K0〉r

]
. (43)

In the experiment, two kinds of measurements were

performed. The first one was to execute the measure-

ment on both sides at the same time. Another one

was to proceed the measurement on the two sides at

different distances (so was the time). The strangeness

was tagged through kaon strong interaction with ab-

sorbers seated away from the kaon creation point.

The strangeness asymmetry is defined as

A(tl, tr) =
Iunlike(tl, tr)−Ilike(tl, tr)
Iunlike(tl, tr)+Ilike(tl, tr)

. (44)

Here, I(un)like means the (un)like strangeness event,

defined as

Ilike(tl, tr) =P (K0, tl;K
0, tr)+P (K̄0, tl; K̄

0, tr) , (45)

Iunlike(tl, tr) =P (K0, tl; K̄
0, tr)+P (K̄0, tl;K

0, tr) . (46)

From Fig. 1 it is clear that the non-separability hy-

pothesis of QM is strongly favoured by experiment.

Fig. 1. The best fit to the experimental mea-

surement
[55]

. The two points with error bars

correspond to time difference ∆t = 0 and

∆t = 1.2τs. Here, the τs denotes the life time

of KS. And, the solid line represents the QM

prediction.

The B0B̄0 entangled system produced at the

Υ(4S) resonance has also been measured in the B-

factory
[56]

. The wave function of Υ(4S) → B0B̄0 has

the similar form as the spin singlet,

|Υ〉= (1/
√

2)
{
|B0〉l|B̄0〉r−|B̄0〉l|B0〉r

}
. (47)

Here, the quantum number of flavor plays the role of

spin polarization in the spin correlation system. As

discussed in the kaon system, in the first method of

measurement, i.e. fixing the quasi-spin but leaving

the measuring time free, the correlation function of

B0B̄0 system reads

E(tl, tr) =−e
− 2t′+∆t

τB cos(∆md∆t) , (48)

where ∆md characterizes the B0−B̄0 mixing, τB is the

B0 decay mean time, t′ = min(tl, tr), and ∆t= |tl−tr|.
Normalizing the above correlation function by the un-

decayed B0 pairs, one then gets the correlation func-

tion as

ER(∆t) =−cos(∆md∆t) . (49)

Put it into the Bell-CHSH inequality, one can get the

violation parameter
[56]

S(∆t) = 3ER(∆t)−ER(3∆t) 6 2 . (50)

The experiment, which is based on the data sam-

ple of 80× 106 Υ(4S) → BB̄ decays at Belle detec-

tor at the KEKB asymmetric collider in Japan, tells

S= 2.725±0.167stat. This obviously violates the Bell

inequality, as shown in Fig. 2.

Fig. 2. The experiment result on the viola-

tion of Bell inequality
[56]

. The horizontal axis

refers to ∆t and the vertical axis to the S. The

LHVTs limit of 2 is shown by the solid line.

In spite of the achievements in the high energy

physics experiments mentioned in above, theoreti-

cally, debate on whether the quasi-spin of unstable

particle can give a genuine test of LHVTs or not

remains
[57]

. If the neutral mesons are stable, the anal-

ogy of quasi-spin with spin would be perfect. How-

ever, in reality the unstable particles may decay, and

hence, in principle one should include the Hilbert

space of all decay products as well
[49]

. By the unitary

time evolution of the unstable state, some informa-

tion may lose into the decay products. In addition,



1094 p U Ô n � Ø Ô n ( HEP & NP ) 1 31 ò

there is another big difference between the real- and

quasi-spin systems. For the former, one can detect ar-

bitrarily the spin state α|+〉+β|−〉; however, it is not

true for the quasi-spin, the meson pair, system. This

difference may induce problem for the meson system.

That is, the passive measurement nature of the quasi-

spin in meson system makes the possibility to choose

freely the quasi-spin among alternative setups lost.

In CPLEAR experiment the active measurement re-

quirement is fulfilled, because the neutral kaon meson

is identified through strong interaction with the ab-

sorber. While in the B meson case, there is no way

for experimenter to force the B-meson to decay at a

given instant, tl or tl′
[57]

. As of the unitary condi-

tion, Eq. (49) for B-meson system is different from

Eq. (42). For B-meson system, it is normalized by

the undecayed B0B̄0 pairs, which, like in the photon

case, asks some additional assumptions to make the

correlation to be comparable to what is required by

the Bell inequality because of the detecting efficiency.

Recently, the B0
SB̄

0
S pair production is observed in

experiment in Υ(5S) decays
[58, 59]

. Since the B0
S has a

suitable x value for the violation of CHSH inequality,

even if the interplay of weak interaction is consided,

we expect that the measurement on B0
SB̄

0
S mixing in

the future may give another notable test of the QM

correlation.

4.3 Some novel ideas in testing LHVT in high

energy physics

Recently, based on the Hardy’s approach Bramon

and Garbarino propose a new scheme to test the lo-

cal realism by virtue of entangled neutral kaons
[60, 61]

.

After neglecting the small CP -violation effect, the

initial KSKL pair from φ decay, or proton-antiproton

annihilation, is the same as Eq. (29), i.e.

|φ(T = 0)〉= (1/
√

2)[KSKL−KLKS] , (51)

where KS = (K0 + K̄0)/
√

2 and KL = (K0− K̄0)/
√

2

are mass eigenstates of the K mesons. One of the

key points in using kaon system to test the LHVTs

is to generate a nonmaximally entangled asymmetric

state. That is

|φ(T )〉 = (1/
√

2+ |R|2)[KSKL−KLKS−

re−i(mL−mS)T+[(ΓS−ΓL)/2]TKLKL] . (52)

Here, r is the regeneration parameter to be of the

order of magnitude 10−3[61]
; ΓL and ΓS are the KL

and KS decay widths, respectively; T is the evolution

time of kaons after their production. Technically, this

asymmetric state can be achieved by placing a thin

regenerator close to the φ decay point
[60]

.

There are four transition probabilities of the joint

measurement in QM, which take the following forms

PQM(K0,K̄0)≡ |〈K0K̄0|φ(T )〉|2 =
|2+Reiϕ|2
4(2+ |R|2) , (53)

PQM(K0,KL)≡ |〈K0KL|φ(T )〉| 2 =
|1+Reiϕ|2
2(2+ |R|2) , (54)

PQM(KL,K̄0)≡ |〈KLK̄0|φ(T )〉|2 =
|1+Reiϕ|2
2(2+ |R|2) , (55)

PQM(KSKS) ≡ |〈KSKS|φ(T )〉| 2 = 0 , (56)

where R=−|R|=−|r|e[(ΓS−ΓL)/2]T and ϕ is the phase

of R. In Ref. [61] the special case of R = −1 was

considered, in which

PQM(K0,K̄0) = 1/12 , (57)

PQM(K0,KL) = 0 , (58)

PQM(KL,K̄0) = 0 , (59)

PQM(KS,KS) = 0 . (60)

From Eq. (13) and in light of the arguments in

Ref. [61], in the following we demonstrate how LHVTs

conflict with QM in this situation.

Suppose in a typical experiment, the strangeness

on both sides at a proper time T is measured. For

example, a detection of K0 on the left side and K̄0

on the right side is achieved. We know this may

happen from Eq. (57), and then we can infer from

Eq. (58) that if the decay on the right hand side is

observed, the KS exits there for certain. In this case,

according to Einstein’s argument the KS on the right

side corresponds to a physical reality. Similarly, if we

have measured the kaon on the left side, according to

Eq. (59) one can confirm that it should be KS. In all,

the non-zero probability of PQM(K0,K̄0) leads to the

non-zero probability of KS on both sides. However,

due to EPR’s criterion of “physical reality” this is in

contradiction with Eq. (60). This kind of contradic-

tion needs a null measurement of the transition prob-

ability of Eq. (60) that cannot be strictly performed.
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Starting from Eq. (14) Bramon et al. obtained the Eberhard’s inequality (EI)
[62]

, i.e.,

HLR ≡ PLR(K0,K̄0)

PLR(K0,KL)+PLR(KS,KS)+PLR(KL,K̄0)+P(K0,ULif)+P(ULif ,K̄0)
6 1 , (61)

where PLR denotes the transition probability in

LHVTs with the subscripts LR symbolizing the lo-

cal realism. HLR means the local realistic value of

the fraction Eq. (61) which must less than 1 accord-

ing to LHVTs. ULif denotes the failures in lifetime

detection. In Ref. [62] the above inequality is used in

deducing the possible violation, which depends upon

the restriction of experimental efficiencies. Unlike the

null measurement this inequality can tolerate the un-

satisfied experimental efficiencies.

For demonstration we consider an ideal case for

simplicity, in which the detection efficiency of the

kaon decays is 100 percent. Then the EI for the kaon

system takes the similar form as Eq. (14)
[21, 63]

. It

reads

PLR(K0,K̄0) 6 PLR(K0,KL)+PLR(KS,KS)+

PLR(KL,K̄0) . (62)

For the case of QM, by substituting Eqs. (53)—(56)

into the inequality (62) and assuming ϕ= 0, we have

(2+R)2

4(2+R2)
6

(1+R)2

2(2+R2)
+0+

(1+R)2

2(2+R2)
. (63)

The above inequality is apparently violated by QM

while R = −1. In Ref. [64] the method used in

Ref. [61] is generalized to heavy quarkonium system.

This straightforward generalization however leads to

some novel observations on the nonlocal property.

Upon further analyzing the R value when it gives vi-

olation of Eq. (63), it is found that there exists a pe-

riod of time during which the violation becomes larger

through time evolution. It is well-known that in

quantum information theory the entanglement prop-

erty of the two-qubit pure states are well understood,

and it can be characterized by the concurrence C
[65]

.

In heavy meson pair system, one can also detect the

dependence of entanglement degree on the evolution

time. Here, according to the definition of concurrence

we have

C(J/ψ) = |〈J/ψ|J̃/ψ〉|= 2

2+ |R| 2 =
2

2+ |r|2e(ΓS−ΓL)T
,

(64)

where |J̃/ψ〉= σ1
yσ

2
y|(J/ψ)∗〉 and σ1, 2 are Pauli ma-

trices. C changes between null to unit for no entan-

glement and full entanglement. Eq. (64) shows that

the state become less entangled with the time evo-

lution. So, considering Eq. (63) we realize that the

violation degree of it does not decrease monotonously

with the degree of entanglement. To clarify this phe-

nomenon we express the violation degree (V D) of

the inequalities (the left side minus the right side)

in term of C and compare it with the usual CHSH

inequality
[7]

. In Fig. 3 different V D behaviors of

CHSH- and Eberhard-type inequalities are presented.

For CHSH case, the V DCHSH is obtained under the

same condition as the maximal violation happens in

the full entanglement, the C = 1. We have:

V DCHSH =
√

2(1+C)−2 . (65)

In fact, the above V DCHSH can also be deduced from

the results given in Refs. [66—68]. For EI case,

V DEI =
−3(1−C)+2

√
2
√
C−C2

4
. (66)

Here, in EI the counterintuitive quantum effect shows

up, i.e. the less entanglement corresponding to a

larger V D in some region (see Fig. 3). It is worthy

to notice that with the time evolution, when R be-

comes less than −4

3
, the QM and LHVTs both satisfy

the inequality (62). Thus given a certain asymmet-

rically entangled state, the Hardy state
[19]

, the QM

and LHVT can be well distinguished from the EI in

the region of R∈ [−4/3,0).

In a recent work
[69]

, an improved measurement of

branching ratioB(J/ψ→K0
SK

0
L) = (1.80±0.04±0.13)×

10−4 is reported, which is significantly larger than

the previous ones. Since entangled kaon pairs from

heavy quarkonium decays can be easily space-likely

separated, little evolution time T will guarantee the

locality condition
[64]

, and hence enables us to test the

full range of R and so the peculiar quantum effects. It
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is promising and worthwhile to implement such test

in future tau-charm factories, because of both the ex-

perimental feasibility and theoretical importance.

Fig. 3. The violation degree of the Bell inequal-

ities (the dashed line for EI type and the solid

line for CHSH type) in terms of the entan-

glement. Here, for the sake of transparency,

we make a coordinator exchange, that is C =

1−x
2. The magnitudes of V D less than zero

means the broken of the BIs.

5 Conclusions

In this article we present a brief review of the

EPR paradox related studies in high energy physics.

To make it self-contained, we also present some basic

materials on the history of EPR paradox and experi-

mental realizations, for instance in optics, though our

main concern in this work is on the test of LHVT in

high energy physics experiment. The questions and

hopes in our aim are presented and discussed. The

study on BI and quantum correlation in high energy

physics in fact has experienced a long time, and in this

article it is impossible for us to cover every aspect of

the developments in this subject. For instance, in the

kaon system there exist some different approaches in

the study
[70]

. On this respect, readers may refer to

Refs. [71, 72] and references therein. Noticing that

there must be some important researches which are

neglected and not referred in this work, we feel sorry

for those authors.

The developments in the study of Bell inequalities

and quantum information theory are very important

for people to further understand the elusive nature

of quantum phenomena. Investigation on testing the

validity of LHVT in high energy physics is still an

active and intriguing topic. The study in turn also

stimulates some new experimental methods in high

energy physics. Because in high energy physics the

elementary particles are just the quanta which obey

the quantum theory, to test the quantum theory in

this regime looks very unique. To this aim, one can

imagine that there is still a large capacity for high

energy physics to play a more important role in the

future.
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