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Abstract The most popular iteration method used in Direct Demodulation Method (DD) is Richardson-

Lucy (RL) Iteration. The formula of RL iteration can be rewritten in matrix form. There are two matrix

multiplications which contain the main computation cost. They can be transformed into convolution if the

system is shift-invariant. As is well known, convolution can be computed by Fast Fourier Transform much faster

than computed directly. This paper introduces the details of the above procedure, which is called accelerated

direct demodulation method (ADD), and applies the procedure to image restorations of Hard X-ray Modulation

Telescope data. This paper also compares the computation cost between the original DD and ADD.
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1 Introduction

The observation of an object in space x with in-

tensity distribution f(x) can be regarded as a mod-

ulation process which transforms f(x) into observed

data d(ω), where ω denotes the parameters of obser-

vation. The modulation process can be described by

the following equation∫
p(ω,x)f(x)dx = d(ω), (1)

where the integral kernel p(ω,x) is the response coef-

ficient of the instrument to a point x during an ob-

servation ω. Image restoration is to extract enough

information from Eq. (1) and then restore f(x). To

extract more information from Eq. (1), many restora-

tion methods have been developed, such as cross-

correlation, maximum likelihood ratio, maximum en-

tropy and so on. But these conventional methods

cause loss of information contained in the modula-

tion Eq. (1) seriously, and get low signal-noise ratio

(SNR) and poor resolution images.

DD technique
[1, 2]

solves directly the modulation

equations by iterations with physical constraints.

The iteration method used by DD could be Gauss-

Seidel iteration, Jacobi iteration or Richardson-Lucy

iteration
[3, 4]

and so on. The DD method can gain

high signal-noise ratio images, and mightily decrease

the affection of background and noise. And it can

greatly improve the locating precision and angular

resolution, even much higher than the intrinsic angu-

lar resolution of the instruments.

DD method is a general inversion method, which

can be used to deal with the observational data ob-

tained by different kinds of instruments and has

been used to analyze both synthetic data and the

data from various types of space telescope, such

as rotating modulation telescope
[5]

, coded aperture

mask telescope
[6]

, imaging telescope, e.g. COS-B
[7]

,

ROSAT/PSPC
[8, 9]

, XMM-Newton
[10]

, Compton

scattering telescope
[11, 12]

, all-sky monitor on

RXTE
[13]

, slat collimator telescope EXOSAT/ME
[14]

,

HEAO1-A4
[15]

, etc. All results show that the DD

technique can significantly improve spatial resolu-

tions and sensitivities.
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Although DD can get images with much higher

resolution and sensitivity than other image restora-

tion methods, it converges slow and spends large com-

putation time and memory. This restricts its applica-

tion and causes difficulties in analyzing the data from

large area detector with high sensitivity, e.g. Hard X-

ray Modulate Telescope (HXMT).

To solve this problem, we rewrite the formula

of RL iteration into matrix form. Then we prove

that two multiplications of matrix, which contain the

main computation cost, in RL iteration can be trans-

formed into convolutions. It’s well known that convo-

lution can be computed much faster by Fast Fourier

Transform
[16]

(FFT) than computed directly. Thus

DD can be accelerated by many times and needs much

less memory. In this paper, we will firstly introduce

the accelerated DD (ADD) based on FFT in detail.

Then, we will apply the ADD to the image restoration

of HXMT.

2 Accelerated DD method

The discrete form of Eq. (1) is

∑

j

p(i, j)f(j) = d(i). (2)

It can be written in matrix form as

PF = D , (3)

where P is called response matrix. Image restora-

tion is to solve Eq. (3) to estimate F when P and

D are known. The DD method solves Eq. (3) by

iterations with some physical constraints, where the

background constraint is most widely used. In most

cases RL iteration is a good choice. The DD method

with RL iteration can be represented as

1. Let r = 0, initialize f (0)(j) for every j.

2.

f (r+1)(j) = f (r)(j) •

∑

k

p(k,j)
d(k)

d(r)(k)
•

1
∑

h
p(h,j)

,

(4)

where

d(r)(k) =
∑

j

p(k,j)f (r)(j). (5)

3. For every j, if f (r+1)(j) < b(j), f (r+1)(j) = b(j).

4. If the criteria to stop the iteration is not satis-

fied, r = r+1, go to 2.

When practicing, the following matrix form is

used

1. For every j,

s(j) =
∑

h

p(h,j). (6)

2. Let r = 0, initialize f (0)(j) for every j.

3.

D
(r) = PF

(r). (7)

4. For every k

G
(r) : g(r)(k) =

d(k)

d(r)(k)
. (8)

5.

P
(r)
0 = P

T
G

(r). (9)

6. For every j

f (r+1)(j) =
f (r)(j)p(r)

0 (j)

s(j)
. (10)

7. For every j, if f (r+1)(j) < b(j), f (r+1)(j) = b(j).

8. If the criterion to stop the iteration is not sat-

isfied, r = r+1, go to 2.

In the above 8 steps, the main computation costs

come from Eqs. (7) and (9), which contain two matrix

multiplications. If there are M elements in D and N

elements in F , each multiplication contains M ×N

float multiplications. The store of the response ma-

trix P holds the majority of memory. If stored in

double precision, P needs 8×M×N bytes memory.

For a shift-invariant system, its response matrix

P has the following property:

p(i, j) = p(i−k,j−k), (11)

thus Eq. (5) can be transformed as

d(r)(k) =
∑

j

p(k,j)f (r)(j) =

∑

j

p(k−j,0)f (r)(j) =

∑

j

psf(k−j)f (r)(j), (12)

where psf(j) = p(j,0), and then Eq. (7) can be trans-

formed as

D
(r) = PSF ∗F

(r), (13)

where ∗ means convolution, as is well known, which

can be computed much faster than computed directly.
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Similarly

p(r)
0 (j) =

∑

k

p(k,j)g(r)(k) =

∑

k

p(k−j,0)g(r)(k) =

∑

k

psf(k−j)g(r)(k) =

∑

k

fsp(j−k)g(r)(k), (14)

and then Eq. (9) can be transformed as

P
(r)
0 = FSP ∗G

(r), (15)

where FSP is gotten by rotating PSF by 180◦.

At last we replace Eqs. (7) and (9) by Eqs. (13)

and (15) and then get the accelerated DD method

(ADD). The method introduced above can be proved

applicable to two dimensional cases in the same way.

3 Computation cost of ADD

Note that according to Eqs. (6—10), each original

DD iteration contains 2MN float multiplications in

Eqs. (7) and (9). Then we analyze the computation

cost of ADD.

The main computation cost of ADD comes from

Eqs. (13) and (15). As is well known, the num-

ber of complex multiplications needed by L-points

FFT is
L

2
log2 L. When we compute Eq. (13), we

need first to add zeros to the end of PSF and F
(r)

until their lengths are M + N − 1. It needs two

FFTs and one inverse FFT to compute Eq. (13).

But PSF and FSP won’t change during the iter-

ation, so their FFT can be computed only once be-

fore the iteration starts and the expense can be ig-

nored. Thus the main computation cost of Eq. (13) is

(M+N−1) log2(M+N−1)≈ (M+N) log2(M+N) com-

plex multiplication. Similarly, the computation cost

of Eq. (15) is (2M −1) log2(2M −1)≈ 2M log2(2M).

Considering that one complex multiplication contains

4 float multiplications, we get the acceleration factor

of ADD to the original DD

a =
2MN

4(M +N) log2(M +N)+8M log2(2M)
. (16)

In many cases we get M = N , thus a =

N

8(1+log2 N)
.

In two dimensional cases, we have to add more

zeros to PSF and F
(r) before computing Eqs. (13)

and (15). So we get a smaller factor of accelera-

tion. If D and F have N elements respectively,

a2 ≈
N

16(2+log2 N)
. when N = 121× 121, a2 = 58;

when N = 1024×1024, a2 = 2980 · · · Larger N , larger

acceleration.

In DD method, 8MN bytes memory is needed to

store response matrix P , but in ADD method, P is

replaced by PSF which is just one column of P and

expends only 8M bytes memory.

The FFTs in Eqs. (13) and (15) transform real

sequence to complex sequence, and IFFTs in Eqs.

(13) and (15) transform complex sequence to real se-

quence. Both of them don’t transform complex to

complex. So an FFT function optimized for this fea-

ture gives ADD a further acceleration. The libraries

of FFT are optimized in different ways for various

applications. Thus it is difficult to precisely calcu-

late the acceleration factor a in real implementation.

However, Eq. (16) is still a good approximate estima-

tion.

4 The application of ADD to HXMT

Based on the DD technique, a high energy astro-

physics mission, Hard X-ray Modulation Telescope

(HXMT), has been proposed. Also an imaging test

setup has been built
[17]

to verify the detector per-

formance and the properties of HXMT. HXMT uses

simple non-position-sensitive collimated detectors to

realize high sensitivity and high resolution hard X-ray

imaging survey. The detector of HXMT consists of

eighteen identical NaI(Tl)/CsI(Na) phoswiches. The

area of single module is 283cm2, and the total de-

tecting area is about 5000cm2. the FOV of HXMT

is 5.7◦ × 5.7◦ (FWHM), composed by eighteen non-

symmetric FOV of 5.7◦×1.1◦ which is related to one

of eighteen collimators. The eighteen collimators are

placed with a cross angle of 10◦ with respect to one

another. Fig. 1 is the diagrammatic sketch of the in-

stallation of eighteen detector modules (collimators).
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In theory, the data from any individual detector

of HXMT can be used for imaging by ADD intro-

duced in Section 2. However, due to the small ef-

fective area of one detector, the obtained images will

have low sensitivity and SNR, and poor angular res-

olutions along the direction of the long axis of FOV.

The data of all 18 detectors must be used simulta-

neously to fully exert the imaging ability of HXMT.

But we can’t use the data of more than one detector

in ADD introduced in Section 2 directly. ADD needs

to be modified.

Fig. 1. The installation of the 18 detector mod-

ules (collimators) of HXMT.

The response matrix P of the whole system (all

the 18 detectors) consists of 18 response matrixes of

18 subsystems (each corresponds to one detector),

and the data D of the whole system consists of the

data of 18 subsystems. Eq. (7) can be transformed to

D
(r) =













D
(r)
1

D
(r)
2

· · ·

D
(r)
18













= PF
(r) =













P1F
(r)

P2F
(r)

· · ·

P18F
(r)













, (17)

namely

D
(r)
i = PiF

(r) = PSFi ∗F
(r), i = 1,2, · · · ,18. (18)

Eq. (9) can also be transformed as

P
(r)
0 = P

T
G

(r) =
[

P
T
1 P

T
2 · · ·P T

18

]













G
(r)
1

G
(r)
2

· · ·

G
(r)
18













=

18
∑

i=1

P
T
i G

(r)
i =

18
∑

i=1

FSPi ∗G
(r)
i . (19)

So, the 8 steps in Section 2 can be rewritten as

1. For every j,

s(j) =

18
∑

i=1

∑

h

pi(h,j). (20)

2. Let r = 0, initialize f (0)(j) for every j

3.

D
(r)
i = PSFi ∗F

(r), i = 1,2, · · · ,18 . (21)

4. For every k,

G
(r)
i : g(r)

i (k) =
di(k)

d(r)
i (k)

, i = 1,2, · · · ,18 . (22)

5.

P
(r)
0 =

18
∑

i=1

FSPi ∗G
(r)
i . (23)

6. For every j,

f (r+1)(j) =
f (r)(j)p(r)

0 (j)

s(j)
. (24)

7. For every j, if f (r+1)(j) < b(j), f (r+1)(j) = b(j).

8. If the criteria to stop the iteration is not satis-

fied, r = r+1, go to 3

There is an FFT of F in every convolution in

Eq. (21), so the FFT of F can be computed only

once. Thus we can reduce 17 FFTs.

A test which aims to restore an image of size 12◦×

12◦ is applied to compare the performance between

DD and ADD. There are two sources, one located at

(−0.5◦,−0.5◦), another located at (0.5◦,0.5◦). Their

intensities are both 1.24×10−3/(cm2·s). The intensity

of background is 0.027/(cm2 · s). The image is split

into 121×121 pixels. Each pixel is 0.1◦×0.1◦. When

the collimators point to one pixel of the image, 18 ob-

served data from 18 detectors are obtained. Thus F

and PSFi, Di are two dimensional matrixes which

have 121×121 elements. And Pi is four dimensional

matrix which has 121×121×121×121 elements, and

P consists of P1, P2 · · ·P18.

Table 1 is the comparison between the computa-

tion cost of original DD iteration and ADD iteration

(100 iterations). According to Table 1, the above ap-

plication of ADD to HXMT is about 36 times faster

than the original DD method. And the memory re-

quirement is decreased from unacceptable 28.75GB

to 60MB. This enables the DD imaging of HXMT be

run on a PC easily.
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Table 1. The comparison between the compu-

tation cost of original RL iteration and ADD

iteration (100 iterations).

time cost memory cost

original DD iteration 1440s 28.75GB

ADD iteration 40s 60MB

ADD is equivalent to the original DD in mathe-

matical sense. They ought to obtain identical result

with the same input. The largest relative difference

between DD image and ADD image (the maximum of

|DDimage−ADDimage|/DDimage) in this simulation

is 5×10−9. This tinny difference is due to the errors

in numerical computation and is ignorable. The left

part of Fig. 2 is the cross-correlation image, in which

the two sources are merged into one wide peak. But

in the DD (ADD) image (the right part of Fig. 2),

they are separated clearly.

Fig. 2. Left: Cross-correlation image; Right:

DD(ADD) image.

5 Discussion

To optimize the matrix operation like that in RL

iteration, the first and natural idea which comes to

our mind is to use sparse matrix, which removes the

operations of zero-element in the matrixes. In the

above application, 12.4% elements of the response

matrix P are zeros. Considering the memory cost

of the indexes of nonzero elements, the total memory

cost is about 28.75GB× 1.5× 12.4% = 5.33GB. It is

also unacceptable for a PC. Even if there is no extra

cost of the indexing of sparse matrix, the speed can

be only increased by about 8 times. The ultimate

angular resolution of HXMT is 5′. To separate two

sources 5′ away from each other, the pixels of the im-

age must be smaller than 2.5′×2.5′. The size of such

an image would be larger than 288×288. It is impos-

sible for DD to deal with such a big image even opti-

mized by sparse matrix. But ADD can easily process

1024× 1024 images whose pixel resolution is about

0.7′ by a PC only. Thus the imaging ability of HXMT

can be fully exerted. And in such a case ADD will

be thousands of times faster than the original DD (if

there were computers powerful enough to compute

such DD iterations).

In the above application, the memory cost of the

original DD is 28.75G. But it’s very hard to find

a computer which has so much memory. So the

“28.75GB” comes from theoretical calculation, and

the time cost of the original DD in Table 1 comes

from the direct computation of the convolutions in

Eqs. (13) and (15), because they contains the same

amount of multiplications and additions with Eqs. (7)

and (9), but Eqs. (13) and (15) demand an acceptable

amount of memory.

In some practical cases computing these two con-

volutions directly is better than computing them by

FFT. When the system’s PSF is a small matrix, out-

of-focus blur and motion blur for example, computing

the convolutions in Eqs. (13) and (15) by FFT ex-

pends more time and memory than computing them

directly which is the best way in such a case. The or-

bits of high resolution scout satellites are usually very

low and the ground speed of these satellites is very

high. This makes the photographs taken by these

satellites blur. Otherwise, the impulse responses of

the optical systems and CCD arrays are not δ func-

tions. This brings blur too. It’s feasible to remove

these kinds of blur and improve the quality of these

images by ADD.

The algorithm introduced in this paper is to make

the computing of each DD iteration faster, not to

make the DD method converge faster. The ordered

subset method
[18]

is a good choice to make the DD it-

eration converge faster. In the application in Section

4, the data of each detector can be grouped into one

subset. Thus the ordered subset would make the DD

iteration converge 18 times faster than the original.

And if the computer have enough memory for sparse-

matrix-optimized DD, the data of each detector could

be grouped into more subsets and the speed of con-
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vergence would be higher. The subsets ought to be

carefully selected, otherwise it will cause.

In these years, there are more and more multi-

CPU computers and multi-kernel CPUs. This makes

the parallel computation more and more important

and widely used. And ADD can be programmed

in multi-thread mode. Some FFT libraries, such as

FFTW
[19]

, which support multi-thread computation,

can be used to accelerate the generic ADD introduced

in Section 2. In the case of HXMT, each of the 18 con-

volutions in Eq. (21) or Eq. (23) can be computed by

a single thread simultaneously. This is better than us-

ing multi-thread FFT functions because there is less

dependency between these threads than between the

threads in multi-thread FFT functions. Moreover,

modern GPUs (graphic processing units) have many

pipelines for stream computation, which make a GPU

much more powerful than the best CPUs in parallel

stream computations
[20]

. The main part of DD, as

well as ADD, is stream computations. And there are

libraries for GPU computation. ADD can be acceler-

ated considerably by these libraries.

This research has made use of the Astrophysi-

cal Integrated Research Environment (AIRE) which

is operated by the Center for Astrophysics, Tsinghua

University.
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