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Abstract We explore the consequences of assuming a simple 3-parameter form, first without T -violation,

for the neutrino mass matrix M in the basis νe, νµ, ντ with a new symmetry. This matrix determines the

three neutrino masses m1, m2, m3, as well as the mapping matrix U that diagonalizes M . Since U , without

T -violation, yields three measurable parameters s12, s23, s13, our form expresses six measurable quantities in

terms of three parameters, with results in agreement with the experimental data. More precise measurements

can give stringent tests of the model as well as determining the values of its three parameters. An extension

incorporating T -violation is also discussed.
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1 Neutrino mapping matrix without

T -violation

In this paper we wish to explore further the con-

nection between the neutrino mass operator M which

contains three neutrino masses m1, m2, m3 and the

neutrino mapping matrix U , characterized by the

standard four parameters θ12, θ23, θ13 and eiδ. For

clarity, we first examine the special case that the T -

violating phase parameter δ= 0. In terms of the mass

eigenstates ν1, ν2 and ν3 the neutrino mass operator

is

M =m1ν1ν1 +m2ν2ν2 +m3ν3ν3. (1.1)

Our assumption is that the same M , when expressed

in terms of νe, νµ and ντ, has a simple form with a

new symmetry property:

α(ντ−νµ)(ντ−νµ)+β(νµ−νe)(νµ−νe)+

m0(νeνe +νµνµ +ντντ) (1.2)

also with three real parameters α, β and m0. These

three new parameters are to be determined by the

mass eigenvalues m1, m2 and m3. The transforma-

tion matrix U that brings M from (1.2) to (1.1) is

the neutrino mapping matrix for δ= 0. (The general

case when δ 6= 0 will be discussed in the next section.)

Throughout the paper, we denote

νi =ψ(νi) and νi =ψ†(νi)γ4 (1.3)

with ψ(νi) a 4-component Dirac field operator, †
denoting the hermitian conjugation and the index

i= 1, 2, 3 or e, µ, τ.

Since the neutrino mapping matrix U is indepen-

dent of the overall mass-shift term m0, in order for

our hypothesis to be successful, there must be some

special features about the first two terms in (1.2):

α(ντ −νµ)(ντ −νµ)+β(νµ−νe)(νµ−νe). (1.4)

We note that (1.4) is invariant under the transforma-

tion

νe →νe +z, νµ →νµ +z and ντ →ντ +z (1.5)

with z a space-time independent constant element

of the Grassmann algebra, anticommuting with the
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neutrino field operators νi. Thus, the usual equal-

time anticommutation relations between the neutrino

fields νi and their zero-mass free particle action-

integral are invariant under (1.5). This symmetry is

violated by the last m0-dependent term in (1.2), as

well as by T -violation, as we shall discuss later. The

interesting case that z might be space-time dependent

will not be discussed in this paper.

Expression (1.4) can be generalized to an equiva-

lent form with three real parameters a, b and c:

a(ντ−νµ)(ντ−νµ)+b(νµ−νe)(νµ−νe)+c(νe−ντ)(νe−ντ).

(1.6)

The corresponding neutrino mass operator is

a(ντ−νµ)(ντ−νµ)+b(νµ−νe)(νµ−νe)+

c(νe−ντ)(νe−ντ)+m0

∑

i

νiνi. (1.7)

It is clear that (1.6) is also invariant under the trans-

formation (1.5). The same invariance can also be ex-

pressed in terms of the transformation between the

constants a, b and c, with

a→ a+λ, b→ b+λ, and c→ c+λ. (1.8)

As we shall prove, the form of the neutrino mapping

matrix U remains unchanged under the transforma-

tion (1.8).

Since the relative phases between νe, νµ and ντ

are unphysical, we may transform

νe →−νe, νµ →−νµ and ντ →ντ, (1.9)

so that (1.7) is written in a less symmetric form, with

M = a(ντ +νµ)(ντ +νµ)+b(νµ−νe)(νµ−νe)+

c(νe +ντ)(νe +ντ)+m0

∑

i

νiνi. (1.10)

The sole purpose of using this less symmetric expres-

sion of M is to have the resulting neutrino mapping

matrix U in the standard form given by the particle

data group
[1]

. We write (1.10) as

M = (νe νµ ντ)(m0 +M)









νe

νµ

ντ









, (1.11)

where

M =









b+c −b c

−b a+b a

c a c+a









. (1.12)

The neutrino mapping matrix U is defined by

U †(m0 +M)U =









m1 0 0

0 m2 0

0 0 m3









. (1.13)

Introduce a 3×1 column matrix

φ2 ≡
√

1

3









1

1

−1









. (1.14)

One can readily verify that

Mφ2 = 0; (1.15)

i.e., φ2 is an eigenvector of M with eigenvalue 0. Let

φ1 and φ3 be the other two real normalized eigenvec-

tors of M . Since

φ̃iφj = δij , (1.16)

with ∼ denoting the transpose, the neutrino mapping

matrix U is

U = (φ1 φ2 φ3), (1.17)

which, on account of (1.14) and (1.16), is given by

U =





















√

2

3
cos

θ

2

√

1

3
−
√

2

3
sin

θ

2

−
√

1

6
cos

θ

2
+

√

1

2
sin

θ

2

√

1

3

√

1

6
sin

θ

2
+

√

1

2
cos

θ

2
√

1

6
cos

θ

2
+

√

1

2
sin

θ

2
−
√

1

3
−
√

1

6
sin

θ

2
+

√

1

2
cos

θ

2





















, (1.18)

in the approximation that the T -violating parameter

δ= 0, with the angle θ/2 denoting the azimuthal ori-

entation of φ1, φ3 around the fixed eigenvector φ2.

Except for minor notational differences, the above U

is the same expression first obtained by Harrison and

Scott
[2]

.

Next we return to the transformation (1.8), under

which M of (1.12) transforms as
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M→M+λ









2 −1 1

−1 2 1

1 1 2









.

Since








2 −1 1

−1 2 1

1 1 2









φ2 = 0,

the neutrino mapping matrix U remains given by

(1.18). Setting

λ=−c, (1.19)

we have

a→ α= a−c,
b→ β= b−c,
c→ 0.

(1.20)

The corresponding neutrino mass operator M of (1.7)

becomes (1.2). With the additional phase convention

(1.9), M of (1.10) reduces to

M = α(ντ +νµ)(ντ +νµ)+

β(νµ−νe)(νµ−νe)+m0

∑

i

νiνi, (1.21)

which has only three parameters α, β and m0. Of

course, the mass operator (1.21) is a special case of

the mass operator (1.10), which has 4 parameters a,

b, c and m0. It is of interest that they shares the same

neutrino mapping matrix U given by (1.18), provided

that a−c=α and b−c=β. Yet, the neutrino masses

m1, m2 and m3 in the two cases can be different,

as can be readily seen by examining the trace of M

given by (1.12). Therefore, the full physical contents

of (1.21) and (1.10) are not the same. This is es-

pecially important when we generalize the model to

include T -violation in the next section.

For the remaining part of this section, we shall ex-

plore further the physical consequences of our model,

using only the more restrictive form (1.21) with three

real parameters α, β and m0.

It is instructive to re-derive (1.18) in a more ele-

mentary way. Write (1.21) as

M = (νe νµ ντ) (αMα +βMβ +m0)









νe

νµ

ντ









(1.22)

with

Mα =









0 0 0

0 1 1

0 1 1









(1.23)

and

Mβ =









1 −1 0

−1 1 0

0 0 0









. (1.24)

The matrix αMα + βMβ in (1.22) will be diagonal-

ized in two steps. Introduce first a real orthogonal

matrix
[3, 4]

U0 by setting θ= 0 in (1.18); i.e.,

U0 =



















√

2

3

√

1

3
0

−
√

1

6

√

1

3

√

1

2
√

1

6
−
√

1

3

√

1

2



















. (1.25)

The matrix U0 diagonalizes Mα, with

M ′
α =U †

0MαU0 = 2









0 0 0

0 0 0

0 0 1









, (1.26)

and transforms Mβ to

M ′
β =U †

0MβU0 =
1

2









3 0 −
√

3

0 0 0

−
√

3 0 1









. (1.27)

Their sum αM ′
α + βM ′

β can then be readily diago-

nalized with another real orthogonal transformation

matrix

U1 =

















cos
θ

2
0 −sin

θ

2

0 1 0

sin
θ

2
0 cos

θ

2

















(1.28)

with

sinθ =

[

(2α−β)2 +3β2

]− 1

2√
3β, (1.29)

cosθ =

[

(2α−β)2 +3β2

]− 1

2

(2α−β), (1.30)

and therefore

tanθ=

√
3β

2α−β . (1.31)

The resulting transformation matrix U =U0U1 satis-
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fies








νe

νµ

ντ









=U









ν1

ν2

ν3









, (1.32)

and is given by (1.18). The corresponding masses m1,

m2 and m3 are related to α, β and m0 by

m1 = α+β−
(

α− β

2

)[

1+
3β2

(2α−β)2

] 1

2

+m0,(1.33)

m2 = m0 (1.34)

and

m3 =α+β+

(

α− β

2

)[

1+
3β2

(2α−β)2

] 1

2

+m0. (1.35)

The matrix U depends only on one parameter θ,

which in turn is determined by the ratio β/α.

In the standard parametric representation, the

matrix element U13 is s13 = sinθ13 when eiδ = 1, with

the experimental bound
[1]

s213 = 0.9
+2.3

−0.9
×10−2. (1.36)

From (1.18), U13 is −
√

2

3
sin

θ

2
. It follows then

sin2 θ

2
=

3

2
s213 � 1. (1.37)

Thus, by using (1.29)—(1.31) we see that

(

β

α

)2

� 1, (1.38)

which together with (1.33)—(1.35) yield the conclu-

sion that m1 and m2 are very close, forming a dou-

blet, and m3 is the singlet. Their mass differences are

given by approximate expressions:

m2−m1 = −3

2
β+O

(

β2

α

)

, (1.39)

m3−m2 = 2α+
1

2
β+O

(

β2

α

)

(1.40)

and

m3−
1

2
(m1 +m2) = 2α− 1

4
β+O

(

β2

α

)

. (1.41)

From m1<m2, we conclude

β < 0. (1.42)

Furthermore, ν3 is heavier or lighter than the doublet

ν1 and ν2 depending on the sign of α, with

α> 0 for m3>m1 or m2,

α< 0 for m3<m1 or m2.
(1.43)

Neglecting O(β/α) corrections, we have from (1.34),

(1.39) and m1 positive,

m0>
3

2
|β| (1.44)

and

δm2 ≡m2
2−m2

1 =

(

m0−
3

4
|β|
)

3 |β|. (1.45)

Thus

δm2>
9

4
β2. (1.46)

For

∆m2 ≡m2
3−

1

2
(m2

2 +m2
1) (1.47)

we find, neglecting O(β2),

∆m2 = 4α (α+m0)+

(

1

2
m0−2α

)

|β|. (1.48)

The experimental values for δm2 and ∆m2 are given

by
[1]

δm2 = 7.92(1±0.09)×10−5eV2 (1.49)

and

|∆m2|= 2.4

(

1
+0.21

−0.26

)

×10−3 eV2. (1.50)

Their ratio is

δm2

|∆m2| = 3.3

(

1
+0.23

−0.28

)

×10−2. (1.51)

Next, we analyze first the case that the singlet ν3

is of a lower mass than the doublet masses; i.e., α< 0.

In that case, since m3> 0, (1.26) yields

m3 =m0−2 |α|− 1

2
|β|+O

(

β2

α

)

> 0;

therefore

m0> 2 |α|. (1.52)

Neglecting O(β/α) corrections in (1.45) and (1.48),

we have
∣

∣

∣

∣

δm2

∆m2

∣

∣

∣

∣

=
3

4

∣

∣

∣

∣

β

α

∣

∣

∣

∣

m0

m0−|α| , (1.53)

which gives

3

2

∣

∣

∣

∣

β

α

∣

∣

∣

∣

>

∣

∣

∣

∣

δm2

∆m2

∣

∣

∣

∣

>
3

4

∣

∣

∣

∣

β

α

∣

∣

∣

∣

. (1.54)
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Combining this expression with (1.51), we find

4.4×10−2>

∣

∣

∣

∣

β

α

∣

∣

∣

∣

> 2.2×10−2. (1.55)

On the other hand, from (1.29) and to the same ac-

curacy, we have

sin2 θ=
3β2

4α2
, (1.56)

which on account of (1.36) gives

β2

α2
=

(

0.72
+1.84

−0.72

)

×10−1. (1.57)

While (1.55) is barely consistent with (1.57), the com-

patibility depends on that, within one standard of de-

viation, (1.57) is also consistent with β2/α2 = 0 (i.e.,

s213 = 0). Thus, this “compatibility” between (1.51)

and (1.57) is definitely not a comfortable one. A more

accurate determination of U13 may well rule out the

case that ν3 can be lighter than the doublet ν1, ν2.

Within our model, we also made a similar analysis

for the case that the singlet ν3 is heavier than the

doublet ν1, ν2. In that case, α > 0 and the situation

is quite different; there is no incompatibility between

(1.51) and (1.57).

Remark. We note that if β = 0 in (1.21) then

there is only one term

α(ντ +νµ)(ντ +νµ) (1.58)

that is relevant for the determination of the mapping

matrix; correspondingly, in the mass operator (1.22)

we need only to consider αMα, with Mα given by

(1.23). Introducing a 450 rotation matrix

R1 =



















1 0 0

0

√

1

2

√

1

2

0 −
√

1

2

√

1

2



















, (1.59)

we have

R̃1MαR1 =









0 0 0

0 0 0

0 0 2









. (1.60)

Because of the degeneracy in its first two eigenvalues,

R̃1MαR1 commutes with any unitary matrix of the

form








u
0

0

0 0 1









, (1.61)

where u is a 2×2 unitary matrix. Thus there is a one-

parameter family of solutions for the neutrino mass

eigenstates.

The situation is quite different when
∣

∣

∣

∣

β

α

∣

∣

∣

∣

= 0+ . (1.62)

As mentioned before, because of the invariance (1.5)

and the phase convention (1.9),

ν2 =

√

1

3
(νe +νµ−ντ) (1.63)

is a mass eigenstate. Furthermore, the transforma-

tion matrix

U0 =R1R2 (1.64)

is completely determined, with

R2 =















√

2

3

√

1

3
0

−
√

1

3

√

2

3
0

0 0 1















, (1.65)

which is a rotation of angle= sin−1

√

1

3
. For β/α

small but nonzero, the mapping matrix U deviates

from U0 through the small parameter θ, as given by

(1.18).

2 Neutrino mapping matrix with T -

violation

We generalize the neutrino mass operator M by

inserting phase factors e±iη into (1.6), replacing it by

a(ντ−νµ)(ντ−νµ)+b(νµ−νe)(νµ−νe)+

c(e−iηνe−ντ)(e
iηνe−ντ) (2.1)

where a, b, c and η are all real. When η = 0, (2.1)

becomes (1.6), and is invariant under the symmetry

(1.5). Furthermore, if eiη 6= ±1, T -invariance is also

violated. As in (1.6), in order to conform to the stan-

dard form of the neutrino mapping matrix U given by

the particle data group
[1]

, we make the phase trans-

formation νe → −νe, νµ → −νµ and ντ → ντ, the
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mass operator (1.10) is then replaced by

M = a(ντ +νµ)(ντ +νµ)+b(νµ−νe)(νµ−νe)+

c(e−iηνe +ντ)(e
iηνe +ντ)+m0

∑

i

νiνi, (2.2)

which can be written as

M = (νe νµ ντ) M









νe

νµ

ντ









, (2.3)

where

M = aMa+bMb +cMc +m0 (2.4)

with

Ma =









0 0 0

0 1 1

0 1 1









(2.5)

Mb =









1 −1 0

−1 1 0

0 0 0









, (2.6)

identical to Mα and Mβ given by (1.23) and (1.24),

and

Mc =









1 0 e−iη

0 0 0

eiη 0 1









. (2.7)

As in (1.25)—(1.27), we first perform the U0 trans-

formation. Let

M ′
c ≡ Ũ0McU0 =



















1

6
(5+4cosη)

1

3

√

1

2
(1+eiη −2e−iη)

1

2

√

1

3
(1+2e−iη)

1

3

√

1

2
(1+e−iη −2eiη)

2

3
(1−cosη)

√

1

6
(−1+e−iη)

1

2

√

1

3
(1+2eiη)

√

1

6
(−1+eiη)

1

2



















. (2.8)

Next, we apply the U1 transformation given by

(1.28), and write

Ũ1Ũ0MU0U1 =H0 +ch (2.9)

where H0 is diagonal, given by

H0 =









µ1 0 0

0 µ2 0

0 0 µ3









(2.10)

with µ1, µ2, µ3 the same ones in (1.33)—(1.35), ex-

cept for the replacement of α, β by a, b; i.e.,

µ1 = a+b−
(

a− b

2

)[

1+
3b2

(2a−b)2
] 1

2

+m0,

µ2 = m0 (2.11)

and

µ3 = a+b+

(

a− b

2

)[

1+
3b2

(2a−b)2
] 1

2

+m0.

In (2.9)

h= Ũ1M
′
cU1. (2.12)

Since U0 and U1 are real and symmetric, h is a her-

mitian.

It is useful to decompose h into real and imaginary

parts:

h=hR +ihI (2.13)

where

hI = sinη



















0

√

1

2
cos

θ

2
+

√

1

6
sin

θ

2
−
√

1

3

−
√

1

2
cos

θ

2
−
√

1

6
sin

θ

2
0 −

√

1

6
cos

θ

2
+

√

1

2
sin

θ

2
√

1

3

√

1

6
cos

θ

2
−
√

1

2
sin

θ

2
0



















(2.14)
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and the matrix elements of hR are given by

hR
11 =

1

3

[

2+
1

2
cosθ+(1+cosθ)cosη

]

+

√

1

3

(

1

2
+cosη

)

sinθ,

hR
22 =

2

3
(1−cosη),

hR
33 =

1

3
(2+cosη)− 1

6
(1+2cosη)cosθ−

1

2

√

1

3
(1+2cosη)sinθ, (2.15)

hR
12 = hR

21 =
1

3

√

1

2

(

cos
θ

2
−
√

3sin
θ

2

)

(1−cosη),

hR
13 = hR

31 =
1

6
(
√

3cosθ−sinθ)(1+2cosη)

and

hR
23 =hR

32 =−
√

1

6
(cos

θ

2
+

1√
3

sin
θ

2
)(1−cosη).

The presence of hI violates T -invariance.

We note from (2.14) that the element

ihI
13 =−i

√

1

3
sinη (2.16)

is of particular importance for testing T -invariance.

Furthermore, there are at least three cases to be con-

sidered:

i) |c|� |b|; then T -violation is much smaller than

the present upper limit, regardless of η.

ii) |c| ∼ O[|b|] but |sinη| � 1; then T -violation is

again very small on account of the prefactor sinη in

(2.14).

iii) |c| ∼O[|b|] and |sinη| ∼O[1]; then T -violation

can be close to the present upper limit.

The diagonalization of the 3×3 matrix (2.9) is sim-

plified in case i). In that case, |c| is much less than

|b| and |a|. The mass eigenstates and the correction

to the neutrino mapping matrix can be readily ob-

tained by using the standard first order perturbation

formula.

Another simple case is |η|� 1, which includes the

above case ii). Decompose (2.7) into a sum

Mc = (Mc)0 +∆ (2.17)

with

(Mc)0 =









1 0 1

0 0 0

1 0 1









(2.18)

and

∆=









0 0 e−iη −1

0 0 0

eiη−1 0 0









. (2.19)

Correspondingly, (2.4) can be written as

M =M0 +c∆ (2.20)

with

M0 = aMa +bMb +c(Mc)0 +m0. (2.21)

M0 can be diagonalized by the same unitary matrix

(1.18), with the angle θ given by (1.29)—(1.31), in

which α and β are given by (1.20). For |η| � 1, ∆

is small; the neutrino mapping matrix U can then be

derived by using (2.20) and treating c∆ as a small

perturbation.
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