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Abstract A calculation procedure for effective Abelian-Higgs-like action is presented via Faddeev-Niemi

decomposition of SU(2) gauge field. A natural gauge fixing is explicitly identified in the decomposition

and intrinsic relation between Abelian projection and the symmetry-breaking of the Yang-Mills dynamics

in infrared limit is illustrated. A London like equation is derived for chromo-electronic field.
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1 Introduction

Since quantum chromodynamics(QCD) has been

recognized as the standard theory of strong inter-

actions, a main challenge has been to interpret the

permanent confinement from first principles. It

seems that the nonperturbative dynamics of infrared

QCD can merely be approached effectively by lat-

tice QCD
[1, 2]

yet, though many other approaches

(such as QCD sum rules
[3]

) have been proposed, fre-

quently employing assumptions and approximations

which remain to be justified. In the framework of

pure Yang-Mills(YM) theory an appealing proposal

was made by Faddeev and Niemi
[4]

so as to sep-

arate collective infrared variables from gauge field

variables by decomposing gauge connection into an

Abelian part, an unit color-vector n as well as dual

variables, which manifests the pure YM theory as

an effective Abelian theory with duality structure

between chromo-electric and chromo-magnetic field.

This structure is hoped being consistent with the

dual-superconductor picture[5, 6] of the confinement

via the dual Meissner effect due to the supposed

monopole condensation, in which the chromo-electric

field between two colored sources is squeezed into a

fluxtubes(vortices) and the later permanently con-

fines colored sources(quarks) within hadrons. As

shown by lattice simulations
[7, 8]

, dual dynamics of

the infrared QCD dominates in the Maximal Abelian

gauge, where monopole degrees of freedom seems

form a condensate responsible for confinement. Re-

cently, lattice simulations for center vortices and

monopoles(see Ref. [1] for a review) revive the in-

terests of analytical analysis
[9—11]

of nonperturbative

QCD. In this Letter we present a calculation proce-

dure for effective Abelian-Higgs action based on the

Faddeev-Niemi decomposition of SU(2) gauge field.

A natural gauge fixing is explicitly identified and the

intrinsic relation between Abelian projection and the

symmetry-breaking of the infrared YM dynamics is

illustrated. A London like equation is also derived in

terms of chromo-electronic field.

2 SU(2) field decomposition and

Abelian projection

It seems that the nonperturbative dynamics of
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infrared QCD can merely be approached effectively

by lattice QCD
[1, 2]

yet, though many other ap-

proaches (such as QCD sum rules
[3]

) have been pro-

posed, frequently employing assumptions and approx-

imations which remain to be justified. According

to the original idea of ’t Hooft
[12]

, Abelian projec-

tion is realized by fixing the non-Abelian part of the

gauge ambiguity, breaking full gauge symmetry into

that of maximal Abelian subgroup. The singular-

ities in gauge condition lead to difference between

two group manifolds and were interpreted as mag-

netic monopoles in the electrodynamics with residual

Abelian symmetry.

We begin with SU(2) YM theory where connec-

tion Aµ = Aa
µτa (τa = σa/2) describes 6 transverse

ultraviolet degrees of freedom. We use inner product

τa
•τ b ≡ 2Tr(τaτ b) = δab, A ·B ≡ AaBa, and across

product A×B =−i[A,B] for short. To parameterize

Aµ in the spirit of Abelian projection, we invoke the

infrared ‘magnetic’ variable n(= naτa), an unit vector

in internal (color) space
[13]

. This vector naturally pro-

vides an preferred direction, breaking SU(2) to U(1)

and leaving residual U(1) symmetry (rotation around

n) intact. Here, the rotation around n by angle α

has the form of U(α) = cos(α/2) + in •σ sin(α/2) =

eiαn·σ/2.

Making across product of Dµn− ∂µ n = gAµ×n

with n, where g is coupling constant, one gets

Aµ = Aµn+g−1 ∂µ n×n+bµ (1)

where Aµ ≡Aµ
•n transforms as an Abelian connec-

tion (Aµ→ Aµ +∂µ α/g) for U(1) rotation U(α) and

bµ = g−1n×Dµ(Aµ)n is SU(2) covariant. Here, the

first part Aµn in (1) is valued in H =U(1) while the

second and third terms, both of which are orthogonal

to n, is valued in orbit SU(2)/H . We note that (1) is

true variable change
[14]

if one impose two constraints

on bµ. We also note that the fact that Aµ does not

depend upon the second term in Eq. (1) implies it has

intrinsic structure. To find all relevant variables, we

further decompose bµ in terms of n. Observed that

the orbit space SU(2)/H can be spanned by basis

∂µ n and ∂µ n×n, one can re-parameterize bµ as

bµ = g−1ρ∂µ n+g−1σ∂µ n×n. (2)

Here, the scalar fields ρ and σ can be combined to

define a complex field φ = ρ + iσ. Substituting (2)

into (1) we get the Faddeev-Niemi ansatz
[4]

for SU(2)

connection

Aµ = Aµn+g−1 ∂µ n×n+g−1ρ∂µ n+g−1σ∂µ n×n. (3)

The transformation role of ρ and σ can be given by co-

variance of bµ under the rotation U(α). Noticing that

[∂µ n,e−iαn ] = α∂µ n×n, [∂µ n×n,e−iαn ] = −α∂µ n,

one finds

bU
µ = g−1eiαn(ρ∂µ n+σ∂µ n×n)e−iαn =

g−1(ρ−ασ)∂µ n+g−1(σ+αρ)∂µ n×n,

which implies δρ =−ασ and δσ = αρ, or

δ(ρ+iσ)= iα(ρ+iσ).

Thus, the covariance of bµ yields

φ→φeiα. (4)

For this reason, the complex variables φ can indeed

form a charged scalar field with U(1) symmetry. How-

ever, the second term in Eq. (3) is not U(1) covariant.

Since the connection Aµ has 12 field components

while the right hand side of Eq. (3) has 8 degrees of

freedom, corresponding to 4 components of Aµ, 2 in-

dependent components of na and 2 components (ρ,σ),

the new variables (Aµ, na, φ) are short of 4 degrees

for Eq. (3). As far as on-shell degrees of freedom, Aµ

has 2 transverse polarization components and this re-

sults in 2+2+2 variables in Eq. (3), corresponding

to 6 on-shell polarization components of Aµ.

Notice that Eq. (3) eliminates 4 degrees and it

does not obey full gauge transformation law, for in-

stance, under gauge rotation δn = n×ε, where ε is

an iso-vector with the direction different from n, we

know that Eq. (3) corresponds to the singular gauge

in which Aµn is diagonalized variables and the num-

ber of other off-diagonal terms in Eq. (3) is reduced.

Therefore, one can identify Eq. (3) as a realization of

the Abelian projection. One can also see that n-field

appears as a topological degree of freedom purely as-

sociated with orientation of n.
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3 Abelian Higgs action in terms of col-

lective dual variables

We assume that order-disorder transition do oc-

cur in the infrared regime of YM theory as dual-

superconductor picture of confinement suggested.

Then, the effective model of QCD in confining phase

should be described by the condensate of magnetic

monopoles pairs and Abelized fields. As a relativis-

tic generalization of effective superconductor model,

the Abelian Higgs model has long been proposed to

describe the confining phase of QCD, in which the

string-like singularities provide the confining forces

between field sources
[5, 6]

.

To see the dual structure of infrared YM theory,

we use the fact of asymptotic freedom of QCD
[15]

:

coupling constant g tends to infinity in large-distance

(infrared) limit. With Eq. (3), one finds

Gµν
•n= Fµν +Hµν +g−1n •(Dµn×Dνn),

where Fµν ≡ ∂µ Av−∂v Aµ and Hµν ≡−g−1n •(∂µ n×

∂ν n) stands for the chromo-electric and chromo-

magnetic field strengths, respectively. One can iden-

tify magnetic potential Cµ by Hµν ≡ ∂µ Cν−∂ν Cµ. As

a physical field, the total field exhibiting ‘electronic-

magnetic’ duality in color space should be gauge-

invariant and such a field can be given by the ’t Hooft

tensor[16]

fµν = Gµν
•n−n •(Dµn×Dνn)= Fµν +Hµν .

To find the relation of Abelian projection with

symmetry breaking, we fix n to n0 = (sinγ cosβ,

sinγ sinβ, cosγ). This yields Cµ = g−1(cosγ ∂µ β +

∂µ α), which, together with chromo-electric potential

Aµ, shares only U(1) symmetry (Cµ→Cµ +g−1 ∂µ α)

of the partial symmetry e−σ3α of U = e−σ3αe−σ2γe−σ3β

(we assume n0 is along σ3), whereas they do not

under e−σ2γe−σ3β. Therefore, Abelian projection re-

sponds, in SU(2) case, to assigning specific direction

field n(x) at each spacetime point x in Eq. (3).

By ignoring the 1/g2 terms(taking IR limit), one

finds that Abelian component is dominant: Gµν =

(Fµν+Hµν)n, which leads to an Abelized theory with

two dual U(1) field (Aµ↔Cµ)

Ldual =
1

4
(Fµν +Hµν)2. (5)

This means, the infrared theory become the diago-

nal one with φ decoupled, consistent with the idea

of Abelian Projection. Breaking of SU(2) → U(1),

or fixing of the direction of n (quantum operator)

at each point x makes it acquire nonvanishing vac-

uum expectation value(vev.), that is, 〈na(x)〉= na(x)

(c-number field), and

〈∂µ
na(x)∂ν na(x)〉= δµ

ν 〈(∂na)2〉=−δµ
ν m2, (6)

in which m is a mass scale and the minus sign comes

from the fact ∂µ n is space-like for our static case.

Here, δµ
ν arises from the requirement of Lorentz in-

variance of vev. and m2 is due to that ∂µ na may has

a normalized factor (length in isospace) and it has di-

mension of [Mass]. Thus, the S2 symmetry (rotation

of n) of the theory was broken by the QCD vacuum

so that

〈C2
µ〉 = g−2〈(∂n)2〉=−g−2m2,

〈Hµν〉 = 0,

since H is anti-symmetric. Clearly, all vev. of the

field components with Lorentz indices or color indices

explicitly, such as 〈Aµ〉, 〈Cµ〉 and 〈∂µ na〉, are zero due

to its Lorentz invariance and gauge invariance.

Including all off-diagonal components in Equ. (3)

one finds

Gµν = n[Fµν +(1−ρ2−σ2−2σ)Hµν ]+

(g−1∇µρ+2Aµ)∂ν n−(g−1∇νρ+2Aν)∂µ n+

g−1∇µσ∂ν n×n−g−1∇νσ∂µ n×n, (7)

where nµν = δµν(∂ρ n)2−∂µ n • ∂ν n, ∇µρ = ∂µ ρ+gAµσ

and ∇µσ = ∂µ σ− gAµρ. This enable us to define a

U(1) covariant derivative

∇µφ=∇µρ+i∇µσ = (∂µ−igAµ)φ,

With Eq. (7), one gets

Ldual = −
1

4
{F 2

µν +(1−ρ2−σ2−2σ)2H2
µν +

2(1−ρ2−σ2−2σ)FµνHµν +

2nµν

g2
(∇µρ+2gAµ)(∇νρ+2gAν)+

2nµν

g2
∇µσ∇νσ}. (8)
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Here, we looks φ as collective charged field of

monopole pairs. The effective Lagrangian, by tak-

ing QCD vacuum as a condensate of monopole pairs

and averaging Eq. (8) over n with

〈nµ
ν 〉= δµ

ν 〈(∂na)2〉=−δµ
ν m2,

can be given by the Abelian Higgs like model

L
eff = −

1

4
F 2

µν +
m2

2g2
|∇µφ|2 +2m2A2

µ +

2m2

g
AµRe(∇µφ)−V (φ), (9)

where

V (φ)=
λ

4
(|φ|2−1+2Imφ)2,

where λ≡〈H2
µν〉 is positive scale and with dimension

4 and it can be shown that

λ= 2m4/g2.

The verification can be done via the gauge and

Lorentz invariance of the vev. In fact, from Eq. (6),

one has

〈H2
µν〉 = g−2εabcεmkl〈n

a〉〈nm〉〈∂µ nb ∂µ
nk〉〈∂ν nc ∂ν

nl〉=

g−2εabcεmkln
anmδbk〈(∂n)2〉δcl〈(∂n)2〉=

g−2εabcεmbcn
anmm4 = 2!g−2m4.

The effective Lagrangian is then

L
eff = −

1

4
F 2

µν +
m2

2g2
|∇µφ|2 +2m2(1+Imφ)A2

µ +

2m2

g
AµRe(∂µ φ)−V (φ). (10)

We see here that, as a consequence of n-field

condensation, Abelian gluon field Aµ has acquired a

mass ∼m. Accordingly, we have massive gluon with-

out invoking the Higgs-like spontaneous symmetry-

breaking(SSB) mechanism as in superconductor or

dual superconductor picture for confinement. In con-

trast, it is due to SSB of a color direction field n(x) in

the nontrivial QCD vacuum, provided that magnetic-

pairs Bose condensed. The latter has recently con-

firmed by lattice simulation
[8]

in maximally Abelian

gauge. For SU(2) theory, change of variables Eq. (3)

is equivalent to maximally Abelian gauge fixing, since

U(1) is maximal Abelian subgroup of SU(2). Then,

one has desired mass generation of gluon field for in-

frared QCD, the mechanism of which is not the Higgs

one as commonly expected as in dual superconductor

picture
[5]

.

We note that the marginal terms have not in-

cluded in Eq. (9) since new variables Eq. (3) are on-

shell degrees of freedom. The marginal-term inclusion

can be done by using off-shell field decomposition
[17]

and then calculating the effective action through

quantum partition functional Z ∼

∫
[dna]e−iS . To-

ward the leading infrared term, however, our model

is sufficient for the effective description of low-energy

YM theory Eq. (9).

London like equation

To see the relation between the Abelian projec-

tion and mass generation of Abelian gluon field, we

need dual Meissner effect as a possible signal of the

monopole condensation. Here, we show that the effec-

tive model of QCD can yield, in long-distance limit,

a London like equation for Abelized fields. Varying

Eq. (10) gives

∂µ F µν =
m2

2g2
[iφ∗
←→
∂ νφ−2Re∂ν

φ]−m2|φ+2|2Aν ,

∇µ∇
µφ=−

∂V (φ)

∂φ∗

−
m2

g2
∂µ Aµ +im2A2

µ, and c.c.,

(11)

where

∂V (φ)

∂φ∗

=
m2

g2
[|φ|2−1−2Imφ](φ+ i).

We see that the chromo-electric field strongly coupled

with the charged scalar field φ with coupling g while

φ is weakly coupled to itself in the effective dynamics.

Taking the g → ∞ limit in Eq. (11) and using

Lorenz gauge for Aµ, we find

φ≈φ0 = −im2/g2, and c.c.,

∂µ F µν = jν =−m2
V Aν , (12)

in which the second equation in Eq. (12) takes the

form of London’s equation. Here

mV = m(4+m4/g4)1/2≈ 2m,

is the mass scale responsible for dual Meissner effect

and its inverse λL = 1/mV determines the transverse

dimensions of the chromo-electric field Aµ penetrat-

ing into the vacuum condensate. As in superconduc-

tor, Eq. (12) implies that chromo-electric field decays
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as

Aµ(d)= Aµ(0)exp(−d/λL)

as they depart from the singular vortex tube(string),

where d stands for the distance away from string.

This is consistent with the dual superconductor

picture
[5]

.

We note that the London like equation similar to

Eq. (12) was also derived by Dzhunushaliev
[9]

via or-

dered Abelian components assumption and Abelian

projection. It is pointed out here, however, that the

generation of the vector field mass mV is owing to the

quantum fluctuation of the spacial variation of the

direction n. We also note that the uniform assump-

tion for scalar field φ only follows in infrared(long-

distance) limit.

In conclusion, we presented a calculation proce-

dure for effective Abelian-Higgs-like action based on

the Faddeev-Niemi decomposition of SU(2) gauge

field. A natural gauge fixing is explicitly identified in

this decomposition and the intrinsic relation between

Abelian projection and the symmetry-breaking of

the YM dynamics is illustrated in infrared limit. A

London like equation is derived for chromo-electronic

field with the mass generation being mainly due to

quantum fluctuation of direction n. This enhances

the dual superconductor picture as the possible mech-

anism of quark confinement.

D. Jia thanks X J Wang and J X Lu for numerous

discussion, and M L. Yan for valuable suggestions.
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