超重核²⁶⁶Hs形成截面的入射道依赖^{*}

刘祖华1 包景东2

1 (中国原子能科学研究院 北京 102413) 2 (北京师范大学物理系 北京 100875)

摘要 计算和比较了²⁶Mg+²⁴⁴Cm,²⁷Al+²⁴³Am和³²S+²³⁸U3个反应系统的俘获截面和复合核²⁷⁰Hs形成截面.在俘获截面计算中,考虑了靶核形变效应.穿越库仑势垒后,反应系统由熔合谷进入不对称裂变谷.只有越过不对称裂变谷中的条件鞍点的事件才进入复合核组态.我们用考虑中子流动和径向运动的二参量Smoluchowski扩散方程来处理中间阶段的动力学过程.此外,还计算了经4n蒸发形成超重核²⁶⁶Hs的截面.研究表明,入射道的势垒分布,中间阶段的条件鞍点高度对俘获截面,复合核形成几率,以及最终的超重核形成截面有显著影响.

关键词 超重核 势垒分布 条件鞍点 Smoluchowski方程

1 引言

超重核合成实验极需理论配合与支持,以便给出 最佳的弹靶组合,碰撞能量及可靠的形成截面估计. 目前,超重核通过重离子熔合蒸发反应合成.蒸发残 余截面可写成,

$$\sigma_{\rm ER}(E_{\rm c.m.}) = \sum_{J=0}^{\infty} \sigma_{\rm c}(E_{\rm c.m.}, J) \times P_{\rm CN}(E_{\rm c.m.}, J) W_{\rm sur}(E_{\rm c.m.}, J), \quad (1)$$

依赖于碰撞核越过入射道(库仑)势垒的分波俘获截 面σ_c,俘获后复合核形成几率P_{CN}和激发的复合核存 活几率W_{sur}.除最终的复合核去激发过程,正确的理 论预言不但要求对初始的俘获过程有可靠的理论模 型,更需要对反应系统的中间阶段,即从接触到复合 核形成的演化作合理的描述.本文通过²⁶Mg+²⁴⁴Cm, ²⁷Al+²⁴³Am和³²S+²³⁸U熔合后经4n蒸发形成²⁶⁶Hs, 讨论入射道的库仑势垒和中间阶段演化过程中的条件 鞍点对超重核形成截面的影响.

2 俘获截面

俘获截面由分波截面求和得到,

2006 - 03 - 02 收稿

$$\sigma_{\text{capt.}}(E_{\text{c.m.}}) = \sum_{J=0}^{\infty} \sigma_{\text{c}}(E_{\text{c.m.}}, J).$$
(2)

而分波俘获截面为

$$\sigma_{\rm c}(E_{\rm c.m.},J) = \pi \lambda^2 (2J+1) T_{\rm c}(E_{\rm c.m.}J), \qquad (3)$$

其中 $\lambda = \hbar^2/(2\mu E_{c.m.})$ 为约化de Broglie波长, μ 是 约化质量. 而在计算碰撞核穿越库仑势垒的几率, $T_c(E_{c.m}, J)$ 时,考虑靶核的四极形变 β_2 . 由于靶核的 四极形变,入射道的核势为

$$V_{\rm N}(r,\theta) = \frac{V_0}{1 + \exp\left\{\left[r - R_1 - R_2\left(1 + \sqrt{\frac{5}{4\pi}}\beta_2 p_2(\cos\theta)\right)\right] / a\right\}},$$
(4)

其中 $V_0 = 16\pi\gamma_N \overline{c}, a = 0.67$ fm,

$$r_{\rm N} = 1.2496 \left[1 - 2.3 \left(\frac{N - Z}{A} \right)^2 \right] {\rm MeV/fm}^2,$$
 (5)

 $\bar{c} = c_1 c_2 / (c_1 + c_2), c_i$ 为半密度半径, $c_i = R_i - b^2 / R_i,$ b=1fm, R_1, R_2 分别为弹核和靶核半径, N, Z, A分别 是复合核的中子数, 质子数和质量数. 而库仑势为

^{*}国家自然科学基金(10235020, 10235030)资助

$$V_{c}(r,\theta) = \frac{Z_{1}Z_{2}e^{2}}{r} \left[1 + \left(\frac{9}{20\pi}\right)^{1/2} \left(\frac{R_{2}}{r}\right)^{2} \beta_{2}p_{2}(\cos\theta) \right],$$
(6)

 θ 是靶核趋向与碰撞方向的夹角, Z_1 , Z_2 是弹核和 靶核的电荷数. 基于核势与库仑势之和 [$V_N(R, \theta)$ + $V_C(R, \theta)$], 计算 J 分波的穿透系数. 图1显示计算的 ²⁶Mg+²⁴⁴Cm, ²⁷Al+²⁴³Am 和³²S+²³⁸U俘获截面随复 合核激发能 E_{ex} 的变化. 表1中列出了3个反应系统库 仑位垒的平均高度 B_0 , 蒸发残余截面峰值 E_{ex}^{peak} 处的 俘获截面 $\sigma_{capt.}$. 平均势垒高度 B_0 由 ²⁶Mg+²⁴⁹Cm 的 123.5MeV增加到³²S+²³⁸U的158.1MeV. 相应的俘获 截面减小了近10倍. 因此入射道的库仑势垒对俘获截 面有重大性的影响.

3 准裂变与复合核形成的竞争

反应系统从相互接触到复合核形成的动力学演 化过程用类似于布朗运动的扩散过程描述. 计算 中,考虑了二核之间有效表面的相对长度*s*和轻核 的中子数*N*.相应的几率分布*W*(*x*,*y*,*t*)用二参量的 Smduchowski方程计算^[1],

$$\frac{\partial W(x,y,t)}{\partial t} = [L_x(x,y) + \gamma L_y(x,y)]W(x,y,t).$$
(7)

$$\phi_x = s, y = N.$$
 而算符 $L_x 和 L_y$ 分别为

$$L_x(x,y) = -\frac{\partial}{\partial x} D_x(x,y) + D_{xx} \frac{\partial^2}{\partial x^2}, \qquad (8)$$

$$L_y(x,y) = -\frac{\partial}{\partial y} D_y(x,y) + D_{yy} \frac{\partial^2}{\partial y^2}.$$
 (9)

假定扩散系数 D_{xx} 和 D_{yy} 是常数,即 $D_{xx} = kT/\alpha_x$, $D_{yy} = kT/\alpha_y$, T是核温度; α_x , α_y 分别正比作用在自由度x和y的耗散.

反应系统穿越库仑势垒后,进入了不对称裂变 谷.图2给出了3个反应系统的不对称裂变谷的势垒 $V_{af}(x,y)^{[2]}$. 计算中考虑了反应系统的质量不对称, 脖 子和相对距离3个自由度. 用抛物线近似不对称裂变 谷势 $V_{af}(x,y) = -a(y)[x - x_{max}(y)]^2/2$. 其中 x_{max} 为势 的极大处, 相应的势全称为条件鞍点. 扩散运动在排 斥势 $V_{af}(x,y)$ 中进行. 越过 x_{max} 的事件进入复合核, 没有越过 x_{max} 的事件发生准裂变. 漂移系数 D_x 包含x方向的驱动力 $D_x = \alpha(y)(x - x_{max})/\alpha_x$.

控制中子流动的势,

$$V(y,x) = \{V_{p'T'}(x) - V_{pT}(x)\} + \{M_{p'} + M_{T'} - M_p - M_T\}, \quad (10)$$

其中 $M_{\rm p}$, $M_{\rm T}$, $M_{\rm p'}$ 和 $M_{\rm T'}$ 分别是弹核, 靶核中子转移 前后的质量, 中子转移前后的势 $V_{\rm pT}$ 和 $V_{{\rm p'T'}}$ 用参数化 拆叠模型^[3]计算. 中子转移发生在碰撞的早期阶段. 作为一种很好的近似, 控制中子流动的势V(y,x)仍然 可用双核模型, 即公式(10)计算. 计算所得的V(y,x)可用抛物线公式 $V(y,x) = b(x)(y - y_{\rm eq})^2/2$ 近似, 其 中 $y_{\rm eq}$ 为平衡极小点. 由此可求得Y方向的漂移系数 $D_y = -b(x)(y - y_{\rm eq})/\alpha_y$. 势V(y,x), 因而 D_y 对x的变 化不灵敏^[1].

对于每一x值,可解算符L_u的本征方程,

$$L_y(x,y)\phi_n(y,x) = -\lambda_n\phi_n(y,x).$$
(11)

当n=0时,有稳定解,

$$\phi_0(y,x) = \sqrt{\frac{b(x)}{2\pi kT}} \exp\left[-\frac{b(x)(y-y_{\rm eq})^2}{2kT}\right], \quad (12)$$

 $\lambda_0 = 0.$ 这表明系统达到N/Z平衡时,中子数为高斯分布.

公式(7)中,引入参量 γ ,以表明不同的时标. 众所 周知,在低能重离子碰撞中,N/Z平衡比其他集体自 由度,例如核系统的整体长度的改变,快得多的时标 内发生. 在 $\gamma \gg 1$ 的条件下,二参量 Smoluchowski方 程约化为单参量方程^[1],

$$\frac{\partial W(x,t)}{\partial t} = L_{00}W(x,t).$$
(13)

算符L00取以下形式,

$$L_{00} = -\frac{\partial}{\partial x}\overline{D}_x(x) + D_{xx}\frac{\partial^2}{\partial x^2}, \qquad (14)$$

$$\overline{D}_x(x) = \int D_x(x,y)\phi_0(y,x)\mathrm{d}y.$$
(15)

Fokker-Plank 方程(13)有高斯型解.而到达复合 核组态的几率等于 $x \leq x_{max}$ 区域的积分,得

$$P_{\rm CN}(E_{\rm c.m.},J) = \frac{1}{2} {\rm erfc} \sqrt{\overline{\beta}}, \qquad (16)$$

 $\overline{\beta} = \overline{B}_{af}/kT$, erfc 是误差函数互补, 即 (1-erf). 如t = 0时刻反应系统进入 x_0 处的不对称裂变谷, 则条件鞍点 高度

$$B_{\rm af}(y) = \frac{1}{2}a(y) \left(x_0 - x_{\rm max}(y)\right)^2, \qquad (17)$$

而 \overline{B}_{af} 是对中子平衡分布的平均,

$$\overline{B}_{\rm af} = \int B_{\rm af}(y)\phi_0(y,x_0)\mathrm{d}y\,. \tag{18}$$

应当指出,图2显示的不对称裂变谷中的势垒 $V_{af}(x,y)$ 是J=0时的计算结果.事实上 $V_{af}(x,y)$ 因而 B_{af} 及 β 与系统角动量有关.因此公式(16)计算的复 合核形成几率 P_{CN} 是J的函数.

图 2 作为二碰撞核有效表面距离S函数的沿着不 对称裂变谷的宏观形变能 $V_{af}(s)$ 曲线是对²⁶Mg+²⁴⁴Cm,²⁷Al+²⁴³Am,³²S+²³⁸U 3个系统中子分布平衡值即 $y = y_{eq}$ 时计算的结果.

复合核形成截面,

$$\sigma_{\rm comp.}(E_{\rm c.m.}) = \sum_{J=0}^{\infty} \sigma_{\rm c}(E_{\rm c.m.}, J) P_{\rm CN}(E_{\rm c.m.}, J). \quad (19)$$

图3显示²⁶Mg+²⁴⁴Cm, ²⁷Al+²⁴³Am和³²S+²³⁸U 复合核形成截面随激发能 E_{ex} 的变化.由图3可见, 3 个反应系统的复合核形成截面有显著差别.表1中 也列出了3个系统的平均条件鞍点高度及在激发能 E_{ex}^{peak} 处的复合核形成截面.

图 3 ²⁶Mg+²⁴⁴Cm, ²⁷Al+²⁴³Am 和 ³²S+²³⁸U 3个系统复合核形成激发函数的比较

表	1	平均库仑势全 B_0 ,条件鞍点平均高度 B_{af} ,蒸
	发	残余截面峰值激发能 Epeak 以及相应的俘获截
	面	复合核形成截面和 ²⁶⁶ Hs, 形成截面数据

玄纮	B_0	B_{af}	$E_{\rm ex}^{\rm peak}$	σ_{capt}	$\sigma_{\rm comp}$	$\sigma_{\rm ER}$
213 576	$/{\rm MeV}$	$/{\rm MeV}$	$/{\rm MeV}$	$/\mathrm{mb}$	$/\mathrm{mb}$	$/\mathrm{pb}$
26 Mg+ 244 Cm	119.5	1.179	41.88	302	12.5	1.65
$^{27}\mathrm{Al}{+}^{243}\mathrm{Am}$	128.0	1.202	43.84	114	6.04	0.79
$^{32}S+^{238}U$	151.8	1.403	49.04	32.5	1.75	0.23

4 复合核存活几率及蒸发残余截面

存活几率可写成

$$W_{\text{surv}}(E_0^*, J) = G_{xn}(E_0^*, J) \times \prod_k \left[\frac{\Gamma_n(U_k^{\max}, J)}{\Gamma_f(U_{k,f}^{\max}, J) + \Gamma_n(U_k^{\max}, J)} \right]_k,$$
(20)

*J*是得合核自旋, $E_0^* = E_{c.m.} + Q$ 是质心系能量与反应 *Q*值之和. G_{xn} 是初始激发能为 E_0^* 的复合核刚好蒸发 x个中子的几率^[4, 5]. 中子宽度^[4, 6],

$$\Gamma_{\rm n}(U_k^{\rm max}, J) = \frac{gm_0\sigma_{\rm n}U_k^{\rm max}}{\pi^2\hbar^2 a_n} \times \exp\left(2\sqrt{a_{\rm n}U_k^{\rm max}} - 2\sqrt{a_{\rm n}U_{k-1}}\right), \quad (21)$$

g为中子自旋简并因子, m_0 , σ_n 为中子质量和衰变核 逆过程中子截面, $gm_0\sigma_n/(\hbar^2) \approx A^{2/3}/10 \text{MeV}^{-1[5]}$, A是衰变核的质量数, $a_n = A/12.0 \text{MeV}^{-1[7, 8]}$ 是能级密 度参数. 母核蒸发k个中子时的最大热激发能,

$$U_k^{\max} = E_0^* - \sum_{i=1}^{k-1} \left(S_n(i) + 2T_i \right) - S_n(k) - E_k^{\text{rot}}, \quad (22)$$

 S_{n} 是中子分离能, T_{i} 是蒸发第i中子时的核温度, E_{k}^{rot} 是母核蒸发等k个中子时的子核的转动能. 转动能按 刚使转动惯量计算. 对于偶--偶核, 奇--偶核和奇--奇核, $\Delta = 24/\sqrt{A}, 12/\sqrt{A} \pi 0^{[6]}$. 裂变宽度^[4, 6],

$$\Gamma_{\rm f}(U_{k,{\rm f}}^{\rm max},J) = \frac{2\sqrt{a_{\rm f}U_{k,{\rm f}}^{\rm max}} - 1}{4\pi a_{\rm f}} \times \exp\left(2\sqrt{a_{\rm f}U_{k,{\rm f}}^{\rm max}} - 2\sqrt{a_{\rm n}U_{k-1}}\right), \quad (23)$$

 $a_{\rm f}$ 是裂变鞍点处的能级密度参数, 假定 $a_{\rm f}=1.07a_{\rm n}^{[4]}$. $U_{k,{\rm f}}^{\rm max}$ 是母核蒸发(k-1)个中子后, 子核在鞍点处的最大热激发能,

$$U_{k,f}^{\max} = E_0^* - \sum_{i=1}^{k-1} \left(S_n(i) + 2T_i \right) - B_f(k) - E_{sd}^{\text{rot}}, \quad (24)$$

Erot 是在鞍点形变下的转动能. 裂变位垒

$$B_{\rm f}(k) = B_{\rm LD} - \Delta_{\rm sh} \exp\left(-U_k^{\rm max}/E_{\rm d}\right), \qquad (25)$$

图 4 作为激发能函数的²⁷⁰Hs蒸发2n, 3n, 4n的存活几率

图 5 ²⁶Mg+²⁴⁴Cm, ²⁷Al+²⁴³Am和³²S+²³⁸U 3 个系统各自熔合后经4n蒸发的超重核²⁶⁶Hs形成 截面

 $B_{\rm LD}$ 是裂变位垒的液滴部分, $\Delta_{\rm Sh}$ 是壳修正能, $E_{\rm d}=25 {\rm MeV}^{[9]}$ 为壳效应衰减因子.计算的²⁷⁰Hs

参考文献(References)

- LIU Zu-Hua, BAO Jing-Dong. Chin. Phys. Lett., 2005, 22: 3044
- 2 Swiatecki W J, Siwek-Wilezynska K, Wilezynski J. Phys. Rev., 2005, C71: 014602
- 3 Adamian G G, Antonenko N V, Scheid W. Nucl. Phys., 1998, A633: 409
- 4 Vandenbosch R, Huizenga J R. Nuclear Fission. New York: Academic Press, 1973, 233

的 4n 蒸发存活几率 W_{surv} 如图 4所示. 图 5 给出 ²⁶Mg+²⁴⁴Cm, ²⁷Al+²⁴³Am和³²S+²³⁸U 3个反应系 统的 ²⁶⁶Hs形成截面. 由图可见,从 ²⁶Mg+²⁴⁴Cm到 ³²S+²³⁸U,蒸发残余截面 $\sigma_{\text{ER}}(E_{\text{c.m.}})$ 下降了近7倍. 峰 值处的 $\sigma_{\text{ER}}(E_{\text{ex}}^{\text{peal}})$ 也列于表1中.

5 讨论与结论

二重核从无尽远穿越入射道的库仑势垒,经历中 子流动,脖子形成等,由熔合谷进入不对称裂变谷.只 有越过在不对称裂变谷中的条件鞍点的事件才到达复 合核组态,否则二核经核子交换后再度分离而发生准 裂变.在俘获过程中,我们考虑了靶核的四有形变效 应.在中间阶段,考虑了中子流动,脖子形成及径向运 动,并用二参量Smoluchowski扩散方程模拟从接触到 越过条件鞍点的动力学演化过程.据此,计算和比较 了²⁶Mg+²⁴³Cm,²⁷Al+²⁴³Am和³²S+²³⁸U3个反应系 统的俘获截面,复合核形成截面,经4n蒸发形成超重 核²⁶⁶Hs截面.计算表明,入射道的库仑势垒,中间阶 段的条件鞍点高度对俘获截面,复合核形成几率,以 及最终的超重核形成截面有显著影响.因此,在进行 超重核实验之前,作深入的理论评估,挑选最佳弹靶 组合,至关重要.

- 5~ LI Wen-Fei et al. Chin. Phys. Lett., 2004, ${\bf 21}:~636$
- 6 Siwek-Wilczynska K, Skwira I. Phys. Rev., 2005, C72: 034605
- 7 Adamian G G, Antonenko N V, Scheid W et al. Nucl. Phys., 1998, **A633**: 409
- 8 Adamian G G, Antonenko N V, Scheid W. Nucl. Phys., 2000, A678: 24
- 9 Adamian G G, Antonenko N V, Ivanova S P et al. Phys. Rev., 2000, C62: 064303; Zubov A S et al. ibid. 2002, 65: 024308

Entrance Channel Dependence of Production Cross Sections of Superheavy Nucleus ²⁶⁶Hs^{*}

LIU Zu-Hua¹ BAO Jing-Dong²

1 (China Institute of Atomic Energy, Beijing 102413, China)2 (Department of Physics, Beijing Normal University, Beijing 100875, China)

Abstract For the ${}^{26}Mg+{}^{244}Cm$, ${}^{27}Al+{}^{243}Am$ and ${}^{32}S+{}^{238}U$ systems, the capture cross sections and the formation of the compound nucleus ${}^{270}Hs$ are calculated and compared. In the entrance channel, the projectile is captured after overcoming the Coulomb barrier that has a distribution due to the deformation of the target nucleus. After contact, the system is assumed to be injected into an "asymmetric fission valley" by the neutron induced neck formation. The dynamic process of the composite nucleus in the "asymmetric fission valley" is treated in a two-parameter Smoluchowski equation in which neutron flow and diffusion in elongation coordinates are taken into account. The compound nucleus configuration is achieved only for those events where the system has diffused over the conditional saddle-point in the "asymmetric fission valley". Our results show that the Coulomb barrier in the entrance channel and the height of the conditional saddle-point in the "asymmetric fission valley" have obvious influence in the processes of the capture and compound nucleus formation.

Key words superheavy nuclei, Coulomb barrier, conditional saddle-point, Smoluchowski equation

Received 2 March 2006

^{*} Supported by National Natural Science Foundation of China (10235020, 10235030)