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Abstract The pairwise entanglement of the Heisenberg XX chain with next-nearest-neighbor (NNN) interac-

tions was investigated by using the concurrence measure. The results show that for the nearest-neighbor sites,

the entanglement may be improved or suppressed depending on the magnitudes of the NNN coupling constant

J, while for the next-nearest-neighbor sites, it always increases with the increase of |J|. The critical tempera-

ture T decreases with the increase of J for the nearest-neighbor entanglement and increases with the increase

of |J| for the next-nearest-neighbor entanglement, respectively. We also show that the general Heisenberg XX

model still can be used to create the entangled W states of three and four qubits, and that the presence of

NNN coupling has no effect on the creation of four-qubit W states, while it shifts the instant of time at which

the three-qubit W states are created.
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1 Introduction

Entanglement is a unique quantum property

that does not exist classically. It has attracted

much attention in recent years due to its central

2 .
! and informa-

tion processing[s], such as quantum teleportationm,

. . . 1,
role in quantum communication!

superdense coding[4], quantum cryptographic key
& in the field

, etc.
the entanglement

distribution Particularly,

of condensed-matter physics,

of the quantum
13

spin systems was intensively

investigated® ' with the measure of the entangle-
ment formation, namely, the concurrence C (see be-
low). However, as far as we know, most discussions
mentioned above merely focused on the models with
the nearest-neighbor (NN) interactions, and the next-
nearest-neighbor (NNN) interaction has seldom been

taken into account. In fact, there are some quasi-
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one-dimensional and two-dimensional antiferromag-
netic (AFM)™"* spin models that manifest such inter-
actions. Therefore, it is worthwhile to include these
interactions in the studies of spin chain entanglement.

In this paper, we study pairwise entanglement be-
tween the nearest neighbors and that between the
next-nearest neighbors in a spin-1/2 antiferromag-
netic Heisenberg XX chain with the nearest-neighbor
coupling constant J; and the next-nearest-neighbor
coupling constant J,. We quantify it by means of the
concurrence™ ' which is defined as C=max{\; —
Ay — A3 — Ay,0}, where the )\;’s are the square roots
of the eigenvalues of the product matrix R = p;;p;;
in the decreasing order. The spin-flipped density ma-
trix is defined by p;; = (0f ® 0f)p;;(0f ®0y). For
a system with temperature T at thermal equilib-
rium, the density matrix is characterized by p(T') =
Z Yexp(—H /ksT), where Z="Tr[exp(—H /kpT)] is
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the partition function and kg is the Boltzmann’s con-
stant and has been set to 1 hereafter. The reduced
density matrix p;; is obtained by tracing out all other

qubits from p(T).

2 General formalism

The Hamiltonian for the spin-1/2 Heisenberg XX

chain we studied in this paper is described by

N
H = Z(UzUZH tonona)+

n=1
N

Ty (oron, ,+oloh,). (1)
n=1

where we have set the NN coupling constant J; to
1 and the NNN coupling constant J, to J for rea-
son of succinct presentation. The periodic boundary
condition is imposed, so that N+1=1, N+2=2.
The topology of the chain being studied is illustrated
in Fig. 1, which can also be considered a two-chain

lattice with diagonal, or “zigzag” couplings.

Fig. 1. Schematic picture of the zigzag spin chain.

The model we studied has the symmetry of trans-
lational invariance, and also it is easy to check that
the commutator [H, $7]=0 (rotation symmetry about
the z-axis); all these guarantee that the reduced den-

sity matrix for the subspace of any two spins has the

form
ut 0 0 0
0 w oz 0
ij — 9 2
Pij 0 - w 0 ( )
0 0 0 wu

in the standard basis {|00), |01), |10), |11)}. Here

N
Sz - Zi:l

The elements of the reduced density matrix (2) are

(07/2) are the collective spin operators.

related to various correlation functions G*° = (o20%)

(o, B = z, y, z) and the magnetization per site

M=(3" 07)/N as

1 _
ut = Z(1+GZH[2M)

h : (3)
= (G HG)

The fact [ﬁ, S%]=0 guarantees that G** = G¥¥,
so the corresponding concurrence quantifying the en-

tanglement of arbitrary two spins is readily obtained

as

C = max{|G=*| %\/(chz)a _AN0). (4)

3 Entanglement of the ground states

3.1 Ground-state entanglement

To observe the effects of the next-nearest- neigh-
bor (NNN) exchange interactions on the entangle-
ment of the ground states, we give our numerical
simulation results as follows. We first consider the
case of the nearest-neighbor entanglement, which
is plotted as a function of J for N=6,7,---,10 in
Fig. 2(a).

of J, the concurrence C, (the subscript n denotes

Apparently, with the increasing value

the nearest-neighbor entanglement) firstly increases
monotonously and arrives at a certain maximum
value, then decays off gradually and drops to zero sud-
denly when J reaches a critical point J.. The singu-
larities are mainly caused by the energy level-crossing
at these points. Also one can find from Fig. 2(a) that
for any number N, the frustrated NNN exchange in-
teractions can be used to enhance the entanglement
between the nearest-neighbor sites at some special pa-
rameter regions of J, which implies that the presence
of interactions with a third party does not always
suppress the entanglement between the original bi-
parties; sometimes it may improve the entanglement.
Moreover, we note that the curves for entanglement
in the case of even and odd N converge rapidly as
N increases, which can be understood from the fact
that for large IV, it should not make a difference to
the nearest-neighbor entanglement whether we add
or subtract a qubit somewhere far along the chain.
For entanglement of the next-nearest-neighbor
sites, as can be seen from Fig. 2(b), there is no en-

tanglement if |J| is below some certain values, which
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means a weak NNN exchange interaction still can-
not induce entanglement between the next-nearest-
neighbor sites. However, if the frustrated NNN ex-
change interaction is strong enough, the entanglement
may be enhanced with the increase of |J| except the
case of N=6.
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Fig. 2.
neighbor coupling constant J at zero absolute

Concurrence versus the next-nearest-

temperature. (a) entanglement of the nearest-
neighbor spins; (b) entanglement of the next-
nearest-neighbor spins.

3.2 Generation of the entangled W states

The Heisenberg XX model
nearest-neighbor exchange interactions can be used
to generate the entangled W of the
form |Wx)=(1/v/N)(e1|100---0) + €2|010---0) +
€%|001---0) 4 --- 4+ €'~ |000---1)) for three and four

qubits[s]. However, when the frustrated next-nearest-

with only the

states

neighbor interaction is present, can such states still
be generated, or do the NNN interactions have any
effect on the generation of the so-called W states?
In order to see this explicitly, let us first rewrite the
Hamiltonian (1) as
N

H=2 [Z(Uigm-l +0,10,)+

n=1

N
I (0f0n 0500 (5)
n=1

where 0% = (0® £i0¥)/2 are the raising and lowering
operators, respectively.
Then if we prepare the initial state of the system

with the first spin pointing up and all other spins

pointing down (i.e., the initial state of the system is
a7 10Y®N), following the procedures of Ref. [5], the

state vector at time t is easily obtained as

@(£) = ba(t)o ]0)", (6)

where

1 & 2k(n—1)7
b(t) = NZQXP |:l(]\7)
k=1

2k 4k
it(cos]\:[—i—Jcos]\;T)} (7)

From Eq. (7), the probability at time ¢ for state

o710)®Y is obtained as
p(n7N7t):|bn(t)‘2> (8)

For the case of N=3 and N=4, after a straight-
forward calculation, the expressions of p(n,N,t) are
given by
1
ol

p(1,3,t)= 5 5+4cos(6+6.J)t]

1 o
p(2,3,t) = p(3,3,t) = 5[2— 2cos(6+6J)t]

and

p(1,4,t) = cos*(2t)

p(2,4,t)= isin2 (4t)

1 . (10)
p(3,4,t) = 1 [1+cos®(4t) —2cos(4t) cos(8Jt)]
p(4,4,t)= i[l + cos?(4t) — 2 cos(4t) sin(8.J¢)]

As everyone knows, in order to generate the so-
called entangled W states, the equality p(n,N,t) =
1/N must be satisfied, which gives the following so-

lutions
_ (I+3n)m
"9(14J)
11)
_ @243n)r ’ (
t, = () (n=0,1,2,---)
and Lio
tn:% (n=0,1,2,---). (12)

for N=3 and 4, respectively.

Apparently, the three-qubit and four-qubit entan-
gled W states can be generated by only one-time evo-
lution of the Heisenberg XX model. However, the
instant of time at which the three-qubit entangled W
states are generated is changed by the presence of the

NNN exchange interactions compared with the case



11

WIS 5E

VAR AE T AR FI % Heisenberg XX 444 48 5% W [RIBF 5T 1135

that only interacts via the NN interactions, while it
has no effect on the generation of the four-qubit en-
tangled W states.

Further studies show that we can’t generate en-
tangled W states more than four qubits with this
model, no matter whether the frustrated NNN in-

teractions are present or not.

4 Thermal entanglement

Raising the temperature mixed the ground states
with other states, depending on the relative magni-
tudes of the parameters involved, the effects of the
NNN coupling on the pairwise entanglement may be
different. To observe these clearly, we determine the
dependence of the concurrence on the NNN coupling
constant J and the environment temperature 7.

We begin by considering the entanglement of the
nearest-neighbor sites, which is plotted as a function
of J and T for N=10 in Fig. 3(a). One can observe
that when the frustrated NNN coupling constant
J >0.7, there is no entanglement at any temperature
T. This indicates that a strong antiferromagnetic
frustrated NNN coupling generally suppresses the
pairwise entanglement between the nearest-neighbor
spins in the Heisenberg XX model. When the NNN
coupling constant J <0.7, at any fixed temperature
T, the concurrence C, initially increases with the in-
crease of J, and then arrives at a certain maximum
value before it decays off to zero as J reaches a critical
point J.. And as is shown in Fig. 3(a), J. decreases
with the increase of the temperature 7T'.

Also it is worthwhile to note that there exists
a threshold temperature Ty, (about 0.8 for N=10)
at which the concurrence C, obtains its maximum
value when J=0. At this critical point, the nearest-
neighbor entanglement is always suppressed when
the NNN exchange interaction is present, while for
T < T, it is always suppressed when J <0, and for
T > Ty, it is always suppressed when J >0.

The next-nearest-neighbor entanglement as a
function of J and T for N=10 is shown in Fig. 3(b).
It is clear that the entanglement only occurs when
J < —=0.2 or J >0.6, and at these two regions, it

always increases with the increasing value of |J| at

any temperature T. The fact that there is no next-
nearest-neighbor entanglement for —0.2 < J < 0.6
may be regarded as evidence to support the argument
that even the presence of a weak NNN exchange inter-
action still cannot induce entanglement between the
next-nearest-neighbor spins.

Fig. 3 also shows that the concurrence C, and
Chn (Chn denotes the next-nearest-neighbor entangle-
ment) always decrease with the increase of the tem-
perature T, which means the thermal fluctuation usu-
ally suppresses the pairwise entanglement in the one-

dimensional Heisenberg XX model.
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Fig. 3. Concurrence versus both next-nearest-
neighbor coupling constant J and temperature
T for N=10. (a) entanglement of the nearest-
neighbor spins; (b) entanglement of the next-

nearest-neighbor spins.
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Fig. 4.
next-nearest-neighbor coupling constant J.

Critical temperature 7T, versus the

(a) entanglement of the nearest-neighbor
spins; (b) entanglement of the next-nearest-
neighbor spins.
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In Fig. 4 we give the dependence of the critical
temperature T, (above which the entanglement van-
ishes) on the NNN coupling constant J. Clearly, for
entanglement of the nearest neighbors, T, always de-
creases with the increase of J and drops to zero at the
neighborhood of J=0.65; and there is a cross point
around J=0.2. For entanglement of the next-nearest
neighbors, T, firstly keeps its constant value of zero,

and then increases with the increase of |J|.

5 Conclusion

In this paper, we investigated the pairwise entan-
glement of the Heisenberg XX model in the presence
of the next-nearest-neighbor exchange interactions.

Through calculating the concurrence of the system,

we show that the nearest-neighbor entanglement may
be enhanced or suppressed depending on the mag-
nitudes of the NNN coupling constant J, while the
next-nearest-neighbor entanglement always increases
with the increase of | J|. The critical temperature T,
above which the entanglement vanishes is also stud-
ied, and the results show that T, declines with the
increase of J for entanglement of nearest neighbors,
and rises with the increase of | J | for entanglement
of the next-nearest neighbors.

By solving the XX model, we also show that the
existence of the NNN coupling shifts the instant of
time at which the three-qubit entangled W states are
generated, while it has no effect on the generation of

the four-qubit entangled W states.
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