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Abstract With helicity partial wave analysis formalism, we discuss how one can distinguish f; resonance from f, resonance in the
process of J/y—>f,$( 8, ,$,) with {;—~=x(0,,%,) and $—>KK(8,, ;) by various projections of angular distributions. We find
that f, and f, can give the same one-dimensional angular distributions for 1(8,) U I($,) U 1(6,) U 1($,), but cannot give the
same I1(6,)UI($,)UI(8,)UI($,)UI($;). So it is necessary to consider all three decay vertices in order to distinguish f;

from f, by one-dimensional projections of angular distributions.
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1 Introduction

Through the conservation laws of total angular mo-
mentum, parity, etc., the spin-parity property of an in-
volved resonance affects angular distributions of final par-
ticles generated in J/¢ decay processes. In this paper, we
use helicity partial wave analysis formalism to study in de-
tail how one can distinguish resonance f, from f, by pro-
jections of various angular distributions in the J/¢—f,$—>
xnKK process which is now under investigation by BES
experiment at the Beijing Electron Positron Collider
(BEPC) .

At BEPC, the J/¢ is generated in the way

e e >7—>J. (1)
Because the energy of e* and e is so high as 1.55GeV,
the mass of e” and e~ is negligible so that the massless
limit can be used. In the massless limit of the e’ and
e, the J/¢ can only be in two spin eigenstates, | JM)
=|11) and |1-1). And the probabilities in state of

|JM) = |11) and |1-1) are both —;— because electron
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and positron at BEPC are not polarized .

In the process J/¢—>f,$—>nnKK, there is only one
final helicity state, | heh hghe) = |0000> . For J/{ in
its spin eigenstate of | 1M ), we denote its decay proba-
bility in process of J/¢—>nnKK as 1(02,,0,,02,,1M),
where 2,(6,,9,) is the angle of f; in the rest frame of J/
¢, 02,(0,,9,) is the angle of particle « in the rest frame
of f; and 2;(0,,9,) is the angle of K in the rest frame
of ¢. In experiment, the angular distribution is the aver-

age of all possible initial state according to their weight,

1(01902’03) = ';_1(01,02,03,11) +

%1(01,02,93,1 . (2)

From the parity symmetry, we have relation of decay
angular distribution between ]/ spin eigenstates 11)
and |1-1) as

1(019¢1902903’1 - 1) =
I(x-06,,%,0,,02,,11). (3)

Then formula (2) can be written as
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1
1(01’02903) = 7[1(61’¢15029Q3911) +

(r - 6,,%,,02,,0,,11)]. (4)
So we only need to calculate the process with J/¢ initial
spin state | 11) in order to predict angular distributions.
Due to SO(2) symmetry of initial state, 1(2,,0,,2,)
is ¢, independent but may be dependent on ¢, and $, .
In order to calculate angular distribution of each de-
cay, we assume helicity partial wave analysis formalism as
in Refs.[1,2],
M, (0,8:M) = (6,8, |M|IM) «
(6,8,av | IMAW)Y(IMAY | M |JM) o
D} ($,0,0)F], (5)

where A and v are helicities of two final particles of each

decay,
d =24 -y, (6)
(8,8,20] JMAY) o D'y ($,6,0) = €™d},(6),
(7)
Fl o (JMA | M|IM), (8)
Fl = g, (= D7F! . 9)

Here, only F, are dynamically related, which should be
either fitted to experimental data or calculated from some
theories. In our following study, we just take them as pa-
rameters and perform remaining kinematics calculation to
study various angular distributions in case of f; to be f; or

f,.

2 Formulae for J/y — f;$ with f, > =,
$—>KK

In this process, there are three subprocesses: J/¢—
f,$, f,~>nn and $—>KK. Formula (5) will be used three
times to these three subprocesses. Then we combine them

to give the final result.
2.1 Subprocess J/y—f,¢

In subprocess J/¢—>f,$, the spin of (J/,f,, ) is
(1,0,1). the initial J/ spin state is | M) = | 11)
while the final particle (f,,$) helicity state may be | Ax)
=101), [00), or |0 - 1). The corresponding decay
amplitudes M., (8,,%,; M) are obtained according to the

formula (5) as
My (6,,931) « D', ($,,6,,00F;,, (10)

Mg (6,,$,51) o Diy ($,,6,,0)F),, (11)

My, (8,,$,51) o« Dy ($,,6,,00F,_,. (12)

The parity of (J/¢, £, $) is (-1, 1, =1). Ac-
cording to formula (9), we have

F, = F!_,. (13)

Therefore there are only two independent dynamically re-

lated complex parameters,
F01,1 = Fol,_l = G5, (14)
Foo = Gye™ . (15)

2.2 Subprocess f,—>nn

Here the spin of (f,,n,n) is (0,0,0). There is
only one possible decay amplitude
My (8,,$,50) o« DY (6,,$,,00F s o 1. (16)

2.3 Subprocess $—>KK

In subprocess $—>KK, the spin of ($,K,K) is (1,

0, 0), The possible initial helicity states of ¢ are

| JM) = |11), |10) and|1 - 1), while the final helici-

ty state of KK is | Au) = |00). The corresponding decay
amplitudes are

Mu(0;,$:51) = Dig ($,,0,,0)Fy,, (17)

M (65,8550) = Do ($5,0,,0)Fy,, (18)

Mo (05,855 = 1) = D 30(8,,6,,0) F7),. (19)

There is only one dynamically related complex parameter,

F'y., which has no effect on KK angular distribution and

can be absorbed into the overall normalization constant.
2.4 Full amplitude for J/y—f,¢—naKK

Combining the three subprocess amplitudes for initial

J/¢ spin state | JM) = |11), we can write out the full
amplitude for the process J/¢g—f,$—>nnKK as
A°(0,,0,,0,,11) =

Moy (0,5 %151) Moo (8, ,8,50) Moy (65, 8551) +

My (8, ,8,51) Mg, (6, ,$,50) My, (65, $,50) +

Mo (6,,8,51) My (6,,8,50) My (65,855 - 1) o

Dy’ ($,,6,,0)F;, D1, ($,,0,,0) +

Dis($1,6,,0) Fo, Do (#5.,05,0) +

DI’ ($,,6,,0)F;, D"\ ,($,,0,,0)

di,1(6,)GeMre* d} ,(0,) +

d10(8,) Gye™2dy o (8;) +

di,(0,)GefreHd, ((6,). (20)
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The corresponding decay probability is
reQ,,0,,0,,11) = |4°(2,,2,,02,,11) |*.
(21)
Then using formula (4), we can calculate the expected
decay angular distribution 1(£2,,,,0,) for the process
J/¢g—>f,¢—>nrKK at an electron-positron collider.
We define

dr
sin6d@’

1($) = "—;

1(8) = d

where
I = Jdnljdﬂzjdml(nl,()z,m). (22)

Then we use MATHEMATIC software to calculate the one-

dimensional projections of the angular distributions as

P w14 3’%‘?—1%—3003(250, (23)
r°e6,) « 1, (24)
0, a1+ Hcos(m), (25)
r’($,) « 1, (26)
I($;) o 1+ 2—(;—f+—lczcos(2¢3). (27)

3 Formulae for J/y — f,¢ with f, > =x,
$—>KK

Formulae for this process can be obtained by the
same procedure as for the process J/¢—>f,¢ with f,—~>xm

and $—>KK.
3.1 Subprocess J/y—f,¢

In subprocess J/¢—>f,$, the spin of (J/¢, f,, $) is
(1,2,1). The initial J/¢ spin state is | JM) = | 11)
while the final particle (f,, $) helicity state may be

[Ap) = 121), [11), [o1), [10), |00}, |- 10),
l0-1), |-1-1), [-2-1). (28)

Corresponding to these helicity states, the decay ampli-

tudes are
MA(8,,$,51) = DY ($,,6,,00F,,, (29)
M\ (6,,8,51) = Dy (4,,6,,00F',, (30)

D' ($,,6,,00Fy,, (31)
D) (4,,6,,00F},, (32)
Dy ($,,6,,0)F;,, (33)
D'\ ($,,6,,00Fl,, (34)

My (6,,%,:1)
My (6,,8,;1)
My(0,,9,51)
M1 (6,,8,51)

M, (6,,8,51) = D, ($,,6,,00F,_,, (35)

M, (6,,851) = Dy (4,,60,,00F ,, (36)

M, (6,,831) = D (4,,60,,00F, . (37)

The parity of (J/,f,,$) is (-1, 1, —1). According
to formula (9), we have '

F, = F_,. (38)

Therefore there are only five independent dynamical com-

plex parameters,

Fo, = Fo_, = He™, (39)
F'y = F!, = Hye™, (40)
F), = F!, | = Hye™, (41)
F'!, = F!_, = He", (42)

Fg = Hse™. (43)

3.2 Subprocess f,—~>nx

In subprocess f,—>xm, the spin of (f,, @, n) is (2,

0, 0). There are five possible decay amplitudes:
Mg (8,,8,52) = Dy (8,,9,,0)Fgy, (44)
Mu(6,,8,31) = D7 (6,,4,,00F,, (45)
 Mg(6,,$,50) = Dy (6,,9,,0)Fg,, (46)
Mg (6,,8,5 - 1) = D*}o(6,,$,,0)FJ,, (47)
Mg(6,,%,5 -2) = D*5(8,,9,,0)F5,. (48)

The common factor Fy, can be absorbed into the overall

normalization factor.
3.3 Full amplitude for J/y—f,¢—naKK

The subprocess $—>KK is the same as in subsection
2.3. Combining the three subprocess amplitudes, for ini-
tial J/¢ spin state | JM) = | 11), we get the full ampli-
tude for J/¢—>f,$—>nnKK as
AY(0,,0,,0,,11) =

My (6,8 :1)MG(8,,8,:2) Mo (85, 8551) +

M (6,,8,:1) M5 (60,,8,51) My, (0;,$551) +

Mo (6,,9,51) My (60,,9,50) My, (8;,$551) +

Mi(0,,8,51) My (0,,8,51) My (65, 9530) +

My(0,,9,51)ME(0,,9,3;0) My, (8,,85350) +

M (0,85 1) My (6,,8,5 - 1) My (6;,$530) +

Mo 1 (6,,8,51) My (0,,$,50) Moo (8,855 - 1) +

ML, (6,810 ME(0,,8,5 - DMy (8,,855 - 1) +

MY, (6,,851)ME(0,,%,5 -2) My (05,855 - 1)
(49)

The corresponding decay probability is
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r(Q,,0,,0,,11) = |A2(02,,0,,0,,11) |*.
(50)
Then using formula (4), we can calculate the expected
decay angular distribution 1(Q,,0,,;) of process J/¢
—f,$—>nnKK at an electron-positron collider. With the
definition of (22), we have
re) « 1+

H: + H, + H, - 2H: -
3H +3H. + 3H: + 2H + H§C°S(20 Y

12(02) oC 1+
12Q2H - H + HY)

DH + 12H. + OH + 12H. + 11H§c°s(262)’
(52)
. 3(62Hf - 4}212 + Hg - 4H: + 3H5)zcos(40 ).
RH + 2H + 90 + R2H. + 11K
(53)
(6, <1+
. . e
_Hifll++2ig2+_H§ + K " +HI;5 c0s(20,) (54)
rF($,) <1+

- (HZ A/ —%—H1H3cos(171 - 7]3))

2H* + 2H: + 2H: +2H: + H:
12(¢3) e 1 +

cos(2¢,), (55)

_ Hf
; 2 6
2H + 2H: + 2H. + 2H + chos( #).  (56)

4 Is f, distinguishable from f, by one-dimen-

sional angular distributions?

In this section, first we show that f; cannot be dis-
tinguished from f, by any single one-dimensional angular
distribution. Then we show that even with combined one-
dimensional angular distributions for first two-decay angles
1(6)U1(8,)UI($,), the f, is still ont distinguish-
able from f,; but with more combined noe-dimensional
angular distributions including the third decay vertex
106)U (0, U 1(8;)U1($,) U I($;), the f, is def-
initely distinguishable from f;, .

For J/¢—f,4—nnKK with J = 0, 2, one-dimen-
sional angular distributions can be written in a general

form as

P(8,) 1+ h;l cos(24,), (57)

F(8,) 1+ h{,zcos(Zﬁz) + hgfzcos(402), (58)

' F(8,) « 1+ h;acos(Zﬁa), (59)
F($,) 1+ hizcos(2¢2), (60)
F($,) o1+ h;acos(2¢3). (61)

For f,, by comparing (23)—(27) with (57)—
(61), we have

G - G,
RS = 1%, 62
" T 36+ G (62)
hy, =0, (63)
hy =0, (64)

- G + G
R, = —1—°, 65
O (65)
hy, = 0, (66)

_ ¢
B = ——1, 7
5 T 260 + G (67)
which limit the range of each A° parameter as
0 1

woe (-1 1), (68)
Ry =0, (69)
h;’z =0, (70)
hl;3 e (“ 1’ 1) ’ (71)
hy =0, (72)

0 1 )
R, € (- 5.0). (73)

For f,, by comparing (51)—(56) with (57)—
(61), we have
_ Hi + Hy + H; - 2H, - H;
v T 3H? +3H: + 3H, + 2H, + H.’
_ 12Q2H - H: + HY)
: T 22H) + 12H} + 9H, + 12H, + 11H.’
(75)

B (74)

by

3(6H> - 4H: + H: - 4H: + 3H?)

hy = ,
% T 22H: + 12H. + 9H. + 12H; + 11H.
(76)
oo - H +2H, - H, - H: + H: 77
’ H: +2H: + H: + H, + H; ’
. (H2 +al = HHcos(m—m))
By = 78
i 2H: + 2H2 +2H; +2H; + , (78)
_ H?
R} ; (79)

s T 2H + 2H: + 2H: + 2H + HY'

which limit the range of each A’ parameter as
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= ( _ 1’%_) ’ (80) which is found to have solution satisfying
' ( 1 1
hg = h20 e (— _7"_)
W€ (-0 (81) o 33
By =k, =0
= ( 1 9) (82) 1 ? (93)
5, R E YA h32 = h;z’ =0
2 .
hﬂ e (_ 191) ’ (83) h‘;z = hiz =0.
A= ( - % ’__lf) , (84) It means that f, may still be indistinguishable from f, .
2 6
. 2 If the $ decay process is considered, we will have an
h2¢3 € ( -3 ,0) ’ (85) additional decay vertex described by angles 8;, ¢,. Then

By comparing Eqs. (68)—(73) with (80)—(85), we

have the following relations

Ry C ks (86)
ho, C ks, (87)
hy C ks (88)
ks, C b (89)
ks, C B3, (90)
k3, c by (91)

These relations mean that any single one-dimensional dis-
tribution for the f, case can be simulated by f,; so f; is
not distinguishable from f, by any single one-dimensional
angular distribution. But most one-dimensional angular
distributions of f, cannot be simulated by f;. Hence f, is
usually distinguishable from f; .

Then how about combined one-dimensional angular
distributions : if several one-dimensional angular distribut-
ions are taken into account, is f, distinguishable from f,?
In order to answer this question, we should construct an
equation set from combined one-dimensional angular dis-
tributions for f; and f,, and check whether it has a solu-
tion. If no solution, it means that the f, cannot be éimu-
lated by f, and is distinguishable.

We first study a simple case in which the $ decay
process is not considered. In this case there are only two
decay vertices described by angles of §,, 6,, $,. Corre-
sponding to the combined one-dimensional angular distri-
bution 71(8,)U I1(6,)U I($,), the equation set is

hy, = h,

hy, = ha,

LAY (92)
6 = T

RS = B3,

2 2

we can construct a bigger combined one-dimensional an-
gular distribution as 1(8,)U7(8,)UI1(8,)UI($,)U
I($,) which leads to an equation set as

'h‘;l = h?,l
By = K
hgz ) hoi (94)
|5 = 83,
W = kY
W =k

which is found with Eqs. (62)—(67) and Eqs. (74)—
(79) to have no solution. Thus there must be a method to
distinguish resonance f; from f, if we take all these one-di-
mensional angular distributions into account.

But what is the method? We will answer this ques-

tion in the next section.
5 How to Distinguish f, From f,?

By comparing the formulae (68 )—(73) with
(80)—(85), it is easy to see that if h§2 , h;z, and hiz do

not satisfy the following conditions:

h§2 =0
by, =0 (95)
hiz =0,

the resonance is definitely f, . Otherwise, it may be both
fand f,. If it is f,, these conditions give the constraint
on H* parameters of resonance f, decay process as
2H: - H: + H: =0
6H: - 4H: + H - 4H: +3H: = 0

H: ) 2 H Hyeos(p - 72) = 0,

(96)
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which leads to the following relations ( B2 - H 0
= <
H: = - 2H + HiH: > 21 "7 2H + 2H; + 2H} + 2H; + H; +
Hi:—H§+H§=>H§>H:, 2 —Hf
97) 1 h¢3 = A + 2 + 2 H? ) 7 =
3 1 + 2 + 3 + 2H4 + H5 +
2
HZgJ?lHIHJ. ﬂ>__ H 1
These relations then put constraints on parameters of hf,l , N 5H; 10H; 10
?93 , his . Here we use h;: . :: , h:: to represent h;l , =>h§; S ( - Tl(—),()) . (101)

293 , hﬁs under the constraint of (97) . For hzl , we have

oo Hi + Hy + H, -2H, - H;
" T 3H: y 3H: + 3H: + 2H: + H: ~
3H + 3H, - 2H:
H: + H, + 6H;
0 _H+H 1 1
3 H) + H; + 6H, 3 3

<

hZ_E__H?‘LHg 1 _
+7 3 Hi + H, +6H, 3 ~
10 H: + H; 1.
3 H + H. +2H, +4H: 3
10 H+H 1 _1
3 5SH: +5H, 3 3

2 1 1
=k € (-3 3) (%8

2
For h,,3 , we have

oo - H +2H, - H, - H. + H}
5T H) +2H, + H, + H, + H}
- 3H: + 3H, - H:

- H + H, + 3H,

3 10H?

T3+ H -H S
3 10H? _
3H§+§|H1\|H3|—Hf
3 10 ~
(’Hly)z'@|Hl|+1

|8, | 3 | Hs]

2

3— _-—
_]_?_(IH1|_L)2<

6 \[H]| V6
—%’ (99)

hence -
rel(-1,-5 (100)

2
For h,,a , we have

If h;: , 33‘ , h.:: and h%l R h?,g , h33 do not overlap, then
the resonances f; and f, can be distinguished. But in fact

they have overlaps:

o N hy € (- %%) (102)
Rt N h‘;ge(-l,—% , (103)
N e - %,0). (104)

So it seems that the f; and f, are still not surely distin-
guishable. However, in such case, if the resonance is f; ,
the corresponding parameter h’ must satisfy the constraint

Oc 1 1)
gl E(—?,? H

(105)
which leads to
o L G-
“ 736 + G
-3G - G:=3G > G:. (106)

The above constraint on G, and G, puts further constraint

%:3(2 -36G: >

0 0 0 0 ]
on h,a . If we use hg: , h,s: to represent h33 , h,,a under

the constraint of (106), we have

-G+ G G:
L R R S
3 G, + G, G + G,

G? G? 1
ho =1-2—5—"— <1-2F—"0 =%
" EE A ¢ +3C " 2

Oc 1)
kY € (- ). (107)
and
- G 1
h0c=___1 _ L
" T2+ G2
RO = ‘Gf < "G? _ -1 ___l_
5 T2+ G T 260 +3G0  2+3 775
Oc 1 1)
Sk € (_7, -3 (108)

From the relations of (101) and (108), we know

that h:; and h:: do not overlap so that the resonances f;

and f, can be surely distinguished: under the constraint'of
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11
2’ 5
must be f,; otherwise the resonance must be f, and there

1
10°

has overlap with h:: from Eq.(100), hence 1(§,) can-

(95) and (106), if h,{s 6( - ) , the resonance

must be kY, € ( 0) . The kg’ from Eq. (107) stll

not guarantee f, and f, to be distinguishable .

6 Summary and discussions

In summary, in the decay process of J/¢p—f;$—
7KK, the one-dimensional projections of angular distri-

butions have the following general form:

106,) = @?}I‘(T w1+ ) cos(26,)  (109)

1
106,) = <30 o 14+ bl cos(26,) + kY cos(46,)

) = Jsing, * -t M 008N EN2 ¥ fg, COSMET
(110)
dr ,

1(6,) = Tong < L+ hs, cos(205) (111)

3
I1($,) = I 1+ hy cos(2¢,) (112)

2
108) = 3L 14 bl cos(28,).  (113)

3_Td3°c+’acos 3).

The resonance must be f, if ' parameters satisfy the con-

dition
hgz =0
hs, =0
1k, =0 (114)
J 1)
moe(-1-5
or
hy =0
hgz' =0
hi =0
] 2 (115)
; 1 1)
hol € (_?’_3_
; 1 1)
Woel-3 -5

Otherwise, h’ parameters must satisfy one of the following

4 conditions and the resonance must be f,,

hy, =0, (116)
hs, # 0, (117)
hi, # 0, (118)
and

th =0

hs, =0

ki =0

{0 (119)

We(-33)

1, € (- 159).

These results indicate that resonances f, and f, can
give the same one-dimensional angular distributions for
1)U I($,)UI(6,)UI(4,), but cannot give the
same 1(8,)UI($)UI(8,)UI($,)UI($,). Soitis
necessary to consider all three decay vertices in order to
distinguish f, from f, by one-dimensional projections of an-
gular distributions .

However, with two-dimensional projections of angu-
lar distributions I(4,,$,) or 1(§,,0,) which inclued
the correlation between various angles, one may distin-
guish f, from f, without considering information from the
third decay vertex. Both moment analysis method""*' and
full amplitude fitting method">®"" include the information
of angle correlations, hence they can be used to distin-
guish f, from f, without considering information from the
third decay vertex although the additional information from
the third decay vertex will give a more clear distinction.
These methods are more powerful than using the simple
one-dimensional projections, but the latter gives more in-

tuitive evidence .

We thank Profs. D.V.Bugg and H. Yu for useful

discussions .
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WME ETREESBANAR, RNEE 1g—~£$(6,,9,) f,>n(0,,%,) $>K K (0,,8,) RBE %
REPRETUBLEN —RADHTRB LAY L F g, RRA. SRRV g, TURRA N EL KR
H(0,,8,,0,,8,) B, ETRANLH LMY (0,,9,,0,,6,,8,) %Y. Bk, ERARIMNA
AHN—BEVEANH L, AFAARERFEANAEETANAIFRE.
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