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Abstract The supersymmetric sinh-Gordon model on a half-line with integrable boundary
conditions is considered perturbatively to verify conjectured exact reflection factors to one loop
order. Propagators for the boson and fermion fields restricted to a half-line contain several novel

features and are developed as prerequisites for the calculations.
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1 Introduction

Given an interesting field theory, it is traditional to develop and examine its supersymmetric
extensions. In four dimensions, supersymmetric field theories provide the prime examples of
situations in which quantities of physical interest may be calculated exactly. For this reason they
are an important source of ideas and intuition. However, in two dimensions, for nonlinear models,
the two requirements of supersymmetry and integrability do not always sit easily together. There
are many examples of two-dimensional models which are both integrable and supersymmetric; for
a selection see Ref. [1]. The supersymmetric version of the sine-Gordon model was introduced in
Ref. [2]; Shankar and Witten” constructed its exact S-matrix which was subsequently further
explored by Schoutens™.

If a field theory is restricted to a half-line by integrable boundary conditions then it turns out
that supersymmetry is further constrained, and more restrictive. In the case of the sine-Gordon
model, it was pointed out by Inami, Odake and Zhangm that only two isolated boundary conditions
are compatible with both supersymmetry and integrability. This is a striking and surprising result
since without supersymmetry Ghoshal and Zamolodchikov” had earlier pointed out that there
should be a two parameter family of nonlinear boundary conditions compatible with integrability.
More recently, using general arguments, exact reflection matrices for the breathers and their

fermionic partners within the N=1 supersymmetric sine-Gordon theory have been conj ectured .
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In this paper, we will examine supersymmetric sinh-Gordon ‘theory restricted to a half-line
by integrable boundary conditions. The paper is organised as follows: in section two, we
summarise the main features of the model and describe the boson and fermion propagators; the
construction of the supersymmetric reflection factors for the two allowed boundary conditions are
presented in section three together with reasons for deviating from the suggestions made by
Moriconi and Schoutens; in the final section we check the fermion reflection factors agree with the

perturbation expansion up to second order in the bulk coupling constant.

2 The supersymmetric sinh-Gordon model with one boundary

To establish the conventions we shall use, it is convenient to start with the supersymmetric

sinh-Gordon model on a half line described by the Lagrangian density

As
2
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where £ is a real coupling constant, m is a mass parameter, ¢ is a real scalar field and y is a
two-component Majorana fermion. The action is supersymmetric if and only if the two
components of the parameter ¢ satisfy & =F &, which confirms that only half the supersymmetry
of the bulk theory is preserved in the presence of boundary conditions. The boundary conditions
for the fields at x=0 follow from Eq. (2.1)

T
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We shall refer to these two boundary conditions as BC", the + corresponding to the signs relating
the fermion components in each of the two cases given in Eq. (2.2).

The construction of the boson propagator for the sinh-Gordon model in the presence of
integrable boundary conditions was given in Ref. [8], but the fermion propagator is constructed
here for the first time. In the supersymmetric case we have just two kinds of boundary condition
preserving both supersymmetry and integrability. The boson propagators corresponding to these
are given by
it t)

+ Y d dk i ik(x X' + ik (x+x’
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The coefficients of the reflected term in the integrand of Eq. (2.3) correspond to the ‘classical’

reflection factors of the model linearised about the ground state solution ¢=0,

° ikFm isinhO@F1 '
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In Eq.(2.4), the second form of the expression refers to the on-shell reflection factor for a particle
with rapidity @ for which k=m cosh 6.

We are familiar with the usual expression for a fermion propagator on the whole line. In the
presence of the boundary we need to modify the standard fermion propagator, ensuring not only
that it performs as a propagator in the bulk but also that it respects the fermion part of the
boundary conditions Eq. (2.2). In two dimensions, with our choice of y-matrices, the expression

for the fermion propagators is the following:

de dk je V)
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From the expression Eq. (2.5), it is natural to take the ‘classical’ fermion reflection factors to
be given by
w coshd

Ki =t
ik¥m 1isinhf=F1

: 2.6)

and as before, the second expression refers to the the on-shell reflection factors.

3 The construction of the reflection factorsfor the supersymmetric theory

Moriconi and Schoutens assumed that the reflection matrix can be factorised in the
following form,

R(&)=R, ()R () . (3.1

Here, @ is the rapidity of the reflecting particle, Ry(6) would be the reflection matrix for the

bosonic part of the theory in the absence of fermions, and Ry is the supersymmetric part and have

the form
K:(0)=R:(0)z*(0) cosh(%ii%j , KZ(6)=R:(0)2*(9) cosh[gi%) . (32

In the classical limit the complete reflection matrix must match the boson and fermion classical
factors. This requires particular classical limits for Z*(6), namely
1

cosh Qili
2 4

In addition, the factor Z'(8) is constrained by the requirements of unitarity and by boundary

z2:(0)> (3.3)

crossing unitarity. Given the classical limits Eq. (3.3) it is natural to set Z* = Z* cosh(g i%j,

then the solutions to the two conditions are
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Notice that these are not quite the same as the proposals made in Ref. [7] since Moriconi and
Schoutens took the view that the classical limit of a free boson reflection factor should be unity; an
assumption which is not generally valid, as we have seen.

Ghoshal” has calculated a formula for the quantum reflection matrix for the breather states of
the sine-Gordon model. The reflection factor for the sinh-Gordon model is presumed to be
deduced from the lightest breather reflection factor in the sine-Gordon theory by analytic

continuation in the coupling constant (replacing £ by if), leading to the expression

(2 B/2)i1)1+B/2)
(1 ENXI+EN1 F)1+F) "’

where B=27/(3*+4r) and the coupling dependent functions E and F also depend on the boundary

R.(0)= (3.6)

parameters introduced via the boundary potential (E and F are related to the parameters 7 and 4 in
Ghoshal's notation by E=7B/r, F=i9B/rt). In the supersymmetric theory, we consider the boundary
conditions Eq.(2.2) for which F=0. On the other hand, an expression for E has been found by
comparing two independent calculations of the boundary breather spectrum[lo]. This translates in
the present situation with two possible boundary conditions Eq. (2.2) to
BC:E=0, BC :E=2(1 B/_2). (3.7)
Thus we take
R;:(1+|3/2)(2 B/2), 3.8)

(1)

and

R _(1+B/2)2 B/2)1+B)I B). (3.9)

1)

Notice that Eq. (3.9) contains the bound-state pole (in the factor (1-B) at 8 =i(1-B)n/2, whereas

Eq. (3.8) contains no bound states. The suggestions made by Moriconi and Schoutens were
different but for
comparison we list them here:

R, =—(2 B/2) , (3.10)
(1+B/2)1)

and
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R, =(1)1+B/2)2 B/2) (3.11)
corresponding to E=B/2 and E=2, respectively. To order order 4* we have identical expansions for
Egs. (3.8) and (3.10),

. .2
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as indeed we do for Eq.(3.9) and (3.11),
. _ 2
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To conclude this section we shall prepare the way for comparing the reflection factors with low
order perturbation theory by giving their expansions to order A This is straightforward apart from
a couple of complicated integrals arising from the Z-factors. For example, setting p

pof3/87, we have

Z*(0)=1 p ﬂ{ 20_ sinh&( ! ! ﬂ . (3.14)

*16n | coshd cosh@+1 coshd

Combining, Egs. (3.12) and (3.14) we deduce expressions for the supersymmetric reflection

factors corresponding to the boundary conditions BC * to order 8

K+(9)~isinh0+lM+(9)’ K+(6) coshé M+(6),

f
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In a similar manner, the expansions of the reflection factors corresponding to the boundary

conditions BC are:

Kb (6)~181nh0 IM (0), K (6)~1smh9 1M (6),

i sinh@ +1 ' cosh@
iB’ . 1 1 2p,0
M (8)=1 2 it sinh @ 0 . 3.16
©) lén (( #) (cosh6’+l coshﬁj coshé’j 3.16)

4  The fermion reflection factors

Using a path integral formalism and perturbation theory, one can obtain an expression for
the generating functional for the supersymmetric sinh-Gordon model up to one-loop order.
Subsequently the boson and fermion two-point functions ~ can be evaluated up to the same
order in order to obtain the fermion reflection factor. We first calculate the fermion reflection

factor corresponding to the case BC ™. The contribution corresponds

%mﬁzrz dt”jow dx"S; (%, 1 X", )G (X", t"; X", t")S; (x", ", X, ') , 4.1

Inserting the fermion and boson propagators in expression (4.1), and performing the integrals, we
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remain with the intergal over @ from which we extract the fermion reflection factor. Thus, in detail

we find

' ~ 2 202
R ()=k; [k),.|1 £ sinhe( ! ! ] p_0 | (4.2)
a l6n coshd+1 coshé 8t coshd

where k=v@? m’ . This agrees precisely with Eq. (3.5) provided we take py=1.

The other fermion reflection factor, corresponding to the boundary condition y; = 5, can

be calculated to the same order in a similar manner to obtain

Rf (|2): Kf (l’(\)cla;s|:1 i’g; smh&[ ! ! j-i— lﬂz 0 :|, (43)

coshd+1 coshd) 8t coshé
This expression also agrees with the expression for the fermionic reflection factor corresponding
to the boundary conditions BC which was quoted in Eq. (3.16).
We have studied the boundary fermion reflection factors for the supersymmetric sinh-Gordon
model perturbatively up to one loop. It is gratifying that the results are in agreement with various

conjectures obtained on general grounds.



Sinh-Gordon 7

References

1 Olshanetsky M A. Commun. Math. Phys., 1983, 88: 63; Evans J] M, Madsen J O. Phys. Lett., 1996, B389: 665;
Evans J M, Hollowood T J. Nucl. Phys., 1991, B352: 723; Papadopoulos G. Phys. Lett., 1996, B365: 98; Penati S,
Zanon D. Phys. Lett., 1992, B288: 297

2 Hruby J. Nucl. Phys., 1977, B131: 275; di Vecchia P, Ferrara S. Nucl. Phys., 1977, B130: 93

3 Shankar R, Witten E. Phys. Rev., 1978, D17: 2134

4 Schoutens K. Nucl. Phys., 1990, B344: 665

5 Inami T, Odake S, ZHANG Z-Y. Phys. Lett., B359: 118

6 Ghoshal S, Zamolodchikov A B. Int. J. Mod. Phys., 1994, A9: 3841
7 Moriconi M, Schoutens K. Nucl. Phys., 1997, B487: 756

8 Corrigan E. Int. J. Mod. Phys., 1998, A13: 2709

9 Ghoshal S. Int. J. Mod. Phys., 1994, A9: 4801

10 Corrigan E, Delius G W. J. Phys., 1999, A32: 8601
11 Ablikim M, Corrigan E. Int. J. Mod. Phys., 2001, A16: 625

Sinh-Gordon

: ' Edward Corrigan’

1( 100039)
2¢( Y010 5DD )
sinh-Gordon R

sinh-Gordon



	Boundary Reflection Factor of the
	The fermion reflection factors

	References

