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Analytic Confidence Level Calculations Using
the Likelihood Ratio and Fourier Transform

HU HongBo!  Jason Nielsen®
( University of Wisconsin-Madison, Wisconsin, USA)

Abstract The interpretation of new particle search results involves a confidence level calculation on either
the discovery hypothesis or the background-only( “null” ) hypothesis. A typical approach uses toy Monte Car-
lo experiments to build an expected experiment estimator distribution against which an cbserved ex-
periment’ s estimator may be compared. In this note, a new approach is presented which calculates
analytically the experiment estimator distribution via a Fourier transform, using the likelihood ratio as
an ordering estimator. The analytic approach enjoys an enormous speed advantage over the toy Monte
Carlo method, making it possible to quickly and precisely calculate confidence level results.
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1 Introduction

A consistently recurring topic in experimental physics has been the interpretation and combina-
tion of results from searches for new particles. The fundamental task is to interpret the collected data
set in the context of two complementary hypotheses. The first hypothesis——the null hypothe-
sis—is that the data set is compatible with non-signal background production alone, and the sec-
ond is that the data set is compatible with the sum of signal and background production. In most cas-
es, the search for new particles proceeds via several parallel searches for final states. The results
from all of these sub-channels are then combined to produce a final result.

All existing confidence level calculations follow the same general strategy!'™). A test statistic
or estimator is constructed to quantify the “signal-ness” of a real or simulated experiment. Most cal-
-culation methods use an ensemble of toy Monte Carlo experiments to generate the estimator distribu-
tion against which the observed experiment’s estimator is compared. This generation can be rather
time-consuming when the number of toy Monte Carlo experiments is great (as it must be for high
precision calculations) or if the number of signal and background expected for each experiment is
great (as it is for the case of searches optimized to use background subtraction).

In this note, we present an improved method for calculating confidence levels in the context of
searches for new particles. Specifically, when the likelihood ratio is used as an estimator, the experi-
ment estimator distribution may be calculated analytically with the Fourier transform. The most dra-
matic advantage of the analytic method over the toy Monte Carlo method is the increase in calculation
speed and precision.
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2 Likelihood Ratio Estimator for Searches

The likelihood ratio estimator is the ratio of the probabilities of observing an event under the

two search hypotheses. The estimator for a single experiment is
b

E=C—3 . (1)
Here %, is the probability density function for signal + background experiments and %, is the proba-
bility density function for background-only experiments. Because the constant factor C appears in
each event’s estimator, it does not affect the ordering of the estimators. For clarity in this note, the
oonstant is chosen to be e*, where s is the expected number of signal events. In practice, not every
event is equally signal-like. Each search may have one or more event variables that discriminate be-
tween signal-like and background-like events. For the general case, the probabilities .7, ,and %, are
functions of the observed events’ measured variables.

As an example, consider a search using one discriminant variable , the reconstructed Higgs
mass. The signal and background have different probability density functions of m, defined as f,
(m) and f,(m), respectively (For searches with more than one discriminant variable, m is re-
placed by a vector of discriminant variables x). It is then straightforward to calculate ¥}, and %,
for a single event, taking into account the event weighting coming from the discriminant variables:
Fey_ OO [sf(m) + b (m) ] 2)

% ~°© e ?[bfy(m)] '

The likelihood ratio estimator can be shown to maximize the discovery potential and exclusion

potential of a search for new particles® .

E=e

3 Ensemble Estimator Distributions Via Fast Fourier Transform(FFT)

One way to form an estimator for an ensemble of events is to generate a large number of toy
Monte Carlo experiments, each experiment having a number of events generated from a Poisson dis-
tribution. Another way is to compute analytically the probability density function of the ensemble es-
timator given the probability density function of the event estimator. The discussion of this section
pursues the latter approach.

The likelihood ratio estimator is a multiplicative estimator. This means the estimator for an en-
semble of events is formed by multiplying the individual event estimators. Alternatively, the loga-
rithms of the estimators may be summed. In the following derivation, F=InE,where E is the like-
lihood ratio estimator.

For an experiment with 0 events observed, the estimator is trivial:

F=0 , (4)
po(F) = 8(F), (5)
where py (F)is the probability density function of F for experiments with 0 observed events.
For an experiment with exactly one event, the estimator is, again using the reconstructed Higgs
mass m ,
L e [sf (m) + bfy(m) ]
et [bfy(m)] ’

E=e¢e
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sfo(m) + bfy,(m)
bfy(m) ’
and the probability density function of F is defined as o, (F).
For an experiment with exactly two events, the estimators of the two events are multiplied to
form an ensemble estimator. If the reconstructed Higgs masses of the two events are m, and m;,
then

F=h (7

[sfo(my) + bfy(my) ] [sf,(my) + bfy(m;) ]

E= CREMICACHD ®
_ o sfi(my) + bfp(my)  sfy(my) + bfy(ma)
F - ll’l blfb(ml) +1n bfb(mz) ’ (9)

The probability density function for exactly two particles p, ( F) is simply the convolution of p; (F)
with itself:

02(F) =Hp1(F1)p1(F2)8(F— F, - F))dF,dF; = p;(F)® p;(F). (10)

The generalization to the case of n events is straightforward and encouraging:

n sf(m;) + bfy(m;)
E=T1 " tmy (1)

oy sf(my) + bfy(my)
F = zln bf,,(m,-; , (12)

p. (F) = JJ’H [ o1 (F,)dF; ] 3(F - EF:' ) = p1(F)® - ® p(F). (13)
i=1 i=] Y
n tumes
Next, the convolution of p; (F) is rendered manageable by an application of the relationship

between the convolution and the Fourier transform.
If A(F)=B(F)XC(F),then the Fourier transforms of A, B, and C satisfy

A(G) = B(G) - C(G). (14)

This allows the convolution to be expressed as a simple power:
2.(G) = [p1(G)]" (15)

Note this equation holds even for n =0, since poz G)=1. For any practical computation, the ana-
lytic Fourier transform can be approximated by a numerical Fast Fourier Transform(FFT).
How does this help to determine p, .}, and p,? The probability density function for an ensemble
estimator with s expected signal and & expected background events is
pun(F) = et S0V (), (16)

n=0
where 7 is the number of events observed in the experiment. Upon Fourier transformation, this be-
comes

o(G) = ie—(ﬂb) (_S%Ql"_ 2. (G) = ie—(ﬂb) (—S—;;—!b—):[pl(G)]", (17)

n=0 n=(

pus(G) = e [0 (G) - 1]. (18)
The function p,+1,( F) may then be recovered by using the inverse transform. In general, this rela-
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tion, which holds for any multiplicative estimator, means that the probability density function for an
arbitrary number of expected signal and background events can be calculated analytically once the
probability density function of the estimator is known for a single event.

Two examples provide practical proof of the principle. For the first, assume a hypothetical esti-
mator results in a probability density function of simple Gausszian form

__1 Gy
pi (F) = v (19)

where 6=0.2 and £ =2.0. For an expected s + 5 =20.0, both the FFT method and the toy Mon-
te Carlo method are used to evolute the event estimator probability density function to an experiment
estimator probability density function. The agreement between the two methods (Fig. 1. (a)) is
striking. The higher precision of the FFT method is apparent, even when compared to 1 million toy
Monte Carlo experiments. The periodic structure is due to the discontinuous Poisson distribution be-
ing convolved with a narrow event estimator probability function. In particular, the pezk at In E=0
corresponds to the probability that exactly zero events be observed (e ¢*#’ =2.1x107?). The
precision of the toy Monte Carlo method is limited by the number of Monte Carlo experiments, while
the precision of the FFT method is limited only by computer precision. For the second example, the
probability density function of a typical non — Gaussian estimator is calculated for an experiment with
s =5 and b =3 expected events (Fig. 1. (b)). Again, the two methods agree well in regions where
the toy Monte Carlo method is useful.

The final calculations of the confidence coefficients c,,, and ¢y, are simply the integrals of the

experiment estimator probability density function!*%.

(b)

p/InE

p/InE

D 20 40 &0
InE

InE

Fig. 1. The experiment estimator probability density functions for a Gaussian event estimator
probability function (a) and for a typical non-Gaussian event estimator (b).

The solid line is calculated with the FFT method, the dashed line is calculated with the toy Monte Carlo
method. Error bars associated with the Monte Carlo method are due to limited statistics.

4 Discussion on Systematic Uncertainties

When the likelihood ratio estimator is used as a test statistic, the systematic uncertainty on the
confidence level is due to the uncertainties on numbers of background events expected, the number of
signal events expected, and the shapes of the discriminant variables. Since the shapes are nothing
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more than the density of signal and background in the discriminant variable space, we focus only on
the uncertainty due to uncertainties on background and signal numbers.

Consider one channel having & types of signal events and ! types of background events. The
number of each type of event is denoted by u;, (i=1,2,-*,k+{). Then the Fourier transform of
the experiment estimator’s density function is calculated using the previous results:

o(G) = eXmw [P TE-1T (20)
where p;,; (G) is the transformed density function for one event of the ith type. If the uncertainties
follow a Gaussian distribution with a correlated error matrix

S,', = <(u,' "(u.'))(u,‘ —<u,~>)> (21)
between the k£ +  types of events, then the systematic uncertainty on the experiment estimator’s
density function can be calculated analytically as

R+l .
I 2.‘_':“'[—_7_5,,,._0—1](L) 1
om(G) = [[e Vax) /TS0
ez:::2:::—%(-5—(u‘>)$;l(u'-(ul))Hdui =
S (0114 3, (710118, [7,0-1] (22)

In general, the resolution function can be constructed by combining several Gaussian distributions,
so the systematic uncertainty can be calculated analytically.

5 Combining Results From Several Searches

Given the multiplicative properties of the likelihood ratio estimator, the combination of several
search channels proceeds intuitively. The estimator for any combination of events is simply the prod-
uct of the individual event estimators. Consequently, construction of the estimator probability densi-
ty function for the combination of channels parallels the construction of the estimator probability den-
sity function for the combination of events in a single channel. In particular, for a combination with
N search channels:

P’+b(G) = H Pis+b(G) = ezﬁl(’,*bj)["’;(c)_l] (23)

=1
Due to the strictly multiplicative nature of the estimator, this combination method is internally
consistent. No matter how subsets of the combinations are rearranged (. e., combining channels
in different orders, combining different subsets of data runs), the result of the combination does not
change.

6 Conclusion

A fast confidence level calculation with a multiplicative estimator makes possible studies that
might have otherwise been too CPU-intensive with the toy MC method. These include studies of im-
provements in the event selections, of various working points, and of systematic errors and their ef-
fects, among others. A precise calculation also makes possible rejection of null hypotheses at the level
necessary for discovery.

The authors thank Haimo Zobernig for very useful discussions .
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