High Energy Physics and Nuclear Physics

Volume 21, Number 1

Microscopic Mechanism of Identical
Multi-Quasiparticle Bands

Zeng Jinyan"?, Lei Yian' and Zhao Enguang!

'(Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China)
*(Department of Physics, Peking University, Beijing, China)

The intrinsic structure of identical bands is demonstrated by using the
particle-number-conserving (PNC) treatment. The occurrence of almost identical
moments of inertia is the result of competition among the shell effect (including shape
variation), the pairing (anti-alignment) effect, and the blocking (antipairing) effect. The
observed moments of inertia of identical multi-quasiparticle bands are reproduced quite
well by the PNC calculation without free parameters.
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1. INTRODUCTION

An unexpected and exciting discovery in high-spin nuclear physics is the finding of almost
identical superdeformed (SD) bands in neighboring nuclei [1,2]. Several explanations [2-4] were put
forward, which assume that the occurrence of identical bands is a specific property of the SD bands.

However, shortly afterwards, it was recognized that the identical bands also exist in normally
deformed (ND) pairs of even- and odd-mass nuclei [5,6] and in pairs of even-mass nuclei at low spins
[7,8], i.e., the occurrence of identical bands is not necessarily related to the phenomena of the
superdeformation or excitation of high-spin states in nuclei. However, it has been well established that
there exist strong pairing correlations in ND nuclei at low spins [9,10], which lead to the odd-even
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differences in various properties (mass, moment of inertia, etc.). Particularly, the pairing interaction
is responsible for the observed reduction of the nuclear moments of inertia compared to that of a rigid
rotor {10,11]. According to the conventional BCS approximation for treating the nuclear pairing
correlation, the moments of inertia of a 1-quasiparticle band should be large than those of the ground
state bands in adjacent even-even nuclei by 15-20%. Therefore, the occurrence of the identical bands
in ND pairs of even- and odd-mass nuclei at low spins is a serious challenge to the mean field (BCS)
approximation [5,6].

1t is worthwhile to mention that many years ago Bohr and Mottelson [10] pointed out that there
exist large fluctuations in the odd-even differences of moments of inertia. For example, while the
band-head moment of inertia of the [642]5/2 band in ®'Dy (~ 160A*MeV !) is over twice as large as
those of the ground bands of '®Dy and '®Dy, the moment of inertia of the [402]5/2* band in "'Lu is
almost equal to that of the ground band of °Yb (~71A*MeV™"). In fact, there exists no distinct
demarcation line between the "identical" and non-identical bands. Careful investigations show that
various odd-even differences are intimately connected with the proper treatment of the blocking effects.
However, just as emphasized by Rowe [12], although the blocking effects are straightforward, it is
very difficult to treat them in the BCS formalism, because they introduce different quasiparticle bases
for different blocked levels. To calculate the odd-even difference in the moments of inertia of the
rare-earth nuclei, the particle-number-conserving (PNC) treatment [14] for the eigenvalue problem of
the cranked shell model (CSM) was used in Ref. [13], in which the blocking effects were treated
exactly. It has been shown that the odd-even difference in the moments of inertia is a pure quantum
mechanical interference effect and the experimental large fluctuations in the odd-even difference of
the moments of inertia, 6J / J = [J 4 + 1) — J, (A)] / Jy (A) (4 even), can be reproduced
satisfactorily. The PNC calculation shows that 5J / J depends sensitively on tlie location relative to the
Fermi surface of the blocked level », and the size of the Coriolis response (|{»|j,|»o}|), i.e., (a) when
¥, is a high j intruder orbit near the Fermi surface (e.g., neutron [642]5/2, [633]7/2, [624]9/2) 6] /
J is especially large, (b) when », is a low j and high Q orbit (e.g., proton [402]5/2, [404]7/2), or very
far from the Fermi surface, 8J / J is very small, hence the identical band may appear, (c) when », is
the other normal orbit, 87/ J = 10-20%.

Before we address the microscopic mechanism of the identical band, we make a brief
phenomenological analysis for the identical bands, particularly the identical multi-quasiparticle bands.
It is well known that the identical bands exist in neighboring even-even nuclei [7-8] (nearly equal
moments of inertia of 2-quasiparticle vacuum bands) and in neighboring even-even and odd-mass
nuclei [5-6,13] (nearly equal moments of inertia of a 1 quasiparticle band and a quasiparticle vacuum
band), one may easily imagine that the identical bands may appear in the neighboring odd-mass nuclei
(nearly equal moments of inertia of two 1-quasiparticle bands). For example, the band-head moments
of inertia: 27 = 70#*MeV~! for [404]7/2 bands in 7 17 1. 17Ta, 2J = 74h*MeV ™! for [404]7/2
bands in ' " Ly, and 2J = 71#*MeV ! for [402]5/2 bands in '** "'Lu. More careful observation
shows that the 1-quasiparticle band in the odd-mass nucleus is almost identical with the 2-quasiparticle
band in the neighboring even-even nucleus. Three typical examples are shown in Table 1 [the
band-head moment of inertia is derived from the lowest two levels of the same signature in each band,
and the level data are taken from [16] (even-even nuclei) and the nuclei data sheets (odd-4 nuclei)]:
These facts seem unexpected. From the BCS approximation, it is very difficult to account for the
occurrence of these identical multi-quasiparticle bands in neighboring odd- and even-mass nuclei.
Moreover, let Jy, J,, J,, denote the moments of inertia of the quasiparticle vacuum band [0)),
1-quasiparticle band « |0)), and 2-quasiparticle band o} % |0)), respectively, then according to the
BCS approximation and neglecting the residual quasiparticle interaction, the following additivity ofthe
moments of inertia can be derived [15]
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Table 1
Three identical pairs of 1- and 2-quasiparticle bands.

Rotational band 2J (H* MeV™)
'Er, g.b., n[633]7/2 112.4
888y, 1773.2keV, K7 = 67, nn{633}7/2 + [512]5/2 113.3
YD, g.b., n[633]7/2 123.7
71Yb, 95.272keV, n[633]7/2 122.1
9r, 1851.4keV, K* = 67, nn{63317/2 + [512]5/2 121.2
''Ho, g.b., p[523]7/2 90.1
12Er, 1985keV, K* = 7, pp[523]7/2 + [404]7/2 89.9

or equivalently, the ratio
J —=J)+{ —J)
=W U7y @)

J ur Jo
However, the experimental results show that in most cases the R ratios deviate from 1 significantly
[151, which implies that the residual quasiparticle interaction due to blocking effects is rather
significant. In this paper we will try to demonstrate the microscopic mechanism of identical
multi-quasiparticle bands using the PNC treatment [13,14].

The CSM Hamiltonian of an axially symmetric nucleus is

Hegy = Hp — wJ, + Hy = Hy + Hp, : 3)

where Hgp is the single-particle (e.g., Nilsson) Hamiltonian, —w/, is the Coriolis interaction, Hyis the
pairing interaction, Hy, = Hgp — wJ, is the cranked Nilsson (CN) Hamiltonian, which is a one-body
operator. Hy = I, hy (i), hy = hep — wj, is for a single particle. Let k| p) = &,|p), where | ) is the
cranked Nilsson smgle-partlcle state with nondegenerate elgenvalue &,. The good quantum numbers
characterizing |p) are the parity , and signature r, =€ e = (a = %F1/2). For.a n-particle
system the eigenstate |i) of Hy H,| z) = E,|i), may be described by the occupation of n particles |i)

| i)y E = T 1€, - |i) is called a cranked many-particle configuration (CMPC),
characterized by E;, parity «, and signature « = ¥;. «, . The eigenstate |¢) of Hesy, Hesu|¥) =
E|{), can be expressed in the CMPC space as

=) Cli). @

For the yrast and low-lying eigenstates of Hcgy, the accurate solution of |y) can be obtained by
diagonalizing Hcgy in a sufficiently large CMPC space, (E; — Ey) < E,, E, is the energy of the lowest
CMPC state, |i,), and E, is sufficiently large. As in Refs. [13,14], E, is chosen to be 0.85 #w, in the
calculation, and in this case, over twenty Nilsson orbits near the Fermi surface are involved (see
Table 3). Calculations show that all the main CMPC (weight > 107%) have been included in our
calculation, so the calculated low-lying eigenstates are accurate enough. In the calculation the Nilsson
parameters &,, &, k, g, and Aw, are all taken from the Lund systematics [17], and the paring
interaction strength G is determined by the observed odd-even mass differences [18], so there is no
free parameter in our calculation. The angular momentum alignment of the state |¢) is (y|/|¥).
According to the CSM, the kinematic moment of inertia of |¢) is

J== (W19 =2 D ICPGILIN+ 2 ¥ 6 GlilL 1)) )

i<j
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Table 2
Band-head moments of inertia of the yrast and 2-quasiparticle
bands of '®Er, and the 1-quasiparticle band of '¥’Er.

2J (B MeV™hH
Rotational band Cal.
Exp.
G=0 G#0
%Er g.b. 118.1 70.7 75.0
%y [633]7/2 + [512]15/2 127.9 113.8 113.3
$7Ey [633]7/2 129.8 112.3 112.4
‘Er [51215/2 © 1397 84.0 84.6
Table 3
The calculated moments of inertia (in units of #ZMeV ™))
of the '®*Er ground band, 1-quasiparticle bands 'Er[512]
5/2 and '“Er[633]7/2, and 2-quasiparticle band '®Er,
K™ = 67, [633]7/2 + [512]5/2.
G=0 G=0 Reduction of moment of inertia J 1 J("*Er g.b.)
Rotational band J(G#0) | J(G=0) | J(G=20)
PN A SN A Y B 7 A N A ¥ L - G=0]G=0

J,(G=0) | J,(G=0) J(G=0)

Er g.b 40.73 | 77.35 | 118.1 | 25.46 | 45.20 | 70.66 62.5% 58.4% 59.8% 1 1

'7Er {512}5/2 40.73 | 98.93 | 139.7 | 25.46 | 58.54 | 84.0 62.5% 59.2% 60.1% 1.18 1.19
'“Er [63317/2 40.73 | 89.07 | 129.8 | 25.46 | 86.86 | 112.3 62.5% 97.5% 86.5% 1.10 1.59
8By K™ = 6~ 40.73 | 87.19 1 127.9 | 25.46 | 88.34 | 113.8 62.5% 101.3% 89.0% 1.08 1.61

For G = 0 and G # 0 (the pairing interaction strength is determined by the observed odd-even mass difference {18], G, = 238.8 keV,
and G, = 282.6 keV, see Ref. [14]). J, and J, are the contributions from protons and neutrons, respectively.

Because J, is a one-body operator, (i|J,|j) is nonzero only when |i) and |/} differ by one particle
occupation. Suppose that after a certain permutation of the creation operators, |i) and |j) can be
reduced into the form |i) = (=)"|u-), |/} =(=)%|v-), where the ellipses stand for the same
particle occupation and (—)M"* =41, (=) =41 according to the even or odd permutation. Thus, J
can be expressed in terms of the single-particle picture as

e IEARIED SRS Y A ©
IRAEES SECIVATAD MATCTD AEES SEPITA VALY ™
AEESPITADD M C AN ®

i<j

where n, = L;| C;|P,, is the particle occupation probability of the CN orbit |u) in the state | ) and
P, = 1,if | ) is occupied in |i), and P,, = 0, otherwise. If the pairing interaction is missing (G = 0),
only one CMPC appears in |) and all the interference terms J,, vanish. Then, for the lowest CMPC
‘ iO)’ 1 1

J“;(io"]xlio):-; E (P"Ijx“‘)’ 9

woce. i [4,))

which, in general, is near the rigid-body value, but shows strong shell effects.
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Table 4
The contributions to the moments of inertia (in units of
#*MeV™!) from neutron N = 5, 6 shells.

N = 5 shell N = 6 shell All shells
Rotational
band G=0 G0 f G=0 G#0 f 2J, 5
diag. | piag, | Off-diag. | Total diag. | piag. | Off-diag. | Total G=0| G=0
1B g b. 34.25 | 35.80 | —11.84 | 23.96 | 70% | 43.10 | 52.06 | —30.08 | 21.20 | 49% | 77.35| 45.20 | 58.4%

'Er [512]15/2 § 32.27 | 33.90 | —3.06 | 30.84 {95.6% ] 66.66 | 63.71 | —36.07 | 27.63 | 41.5% | 38.93 | 58.54 | 59.2%
'STEr [633]7/2 | 34.19 |35.22 | —10.19 | 25.03 | 73.2% | 54.87 | 55.75 | +6.04 | 61.79 [112.6% | 89.07 | 86.86 | 97.5%
SEr K = 67| 32.31 |33.16 | —42.26 | 28.94 | 89.6% | 54.87 | 55.28 | +4.08 | 59.36 {108.2% | 87.19 | 88.34 | 101.3%

The contributions from N < 4 shells are zero for G = 0. For G = 0, the contributions from these shells are stiil very small and not included
in this table. Diag. = 2L,J,,, off-diag. = 2E,,J,,, and f = J(G=0)/J, (G = 0) stands for the reduction of moments of inertia of each major
shell due to the pairing correlation.

As illustrative examples, the band-head moments of inertia of the ground band and the K™ =
6~ nn{633]7/2 + [512]5/2 band in '®*Er, and the '’Fr[633]7/2 and [512]5/2 bands are calculated and
the results are shown in Tables 3-5. The comparison of the calculated band-head moments of inertia
of these bands with experiments is given in Table 2. Considering no free parameter as being involved
in the calculation, the calculated results are quite satisfactory. Particularly, the experimental
phenomena that the moment of inertia of the 2-quasiparticle band '®Er{633]7/2 + [512]5/2 is almost
equal to that of the 1-quasiparticle band '“’Er[633]7/2, but much larger than that of the 1-quasiparticle
band '¥Er[512]5/2, are reproduced quite well in the PNC calculation. Now let us discuss the
underlying physics of such large variation in the moments of inertia.

(1) For G = 0, the calculated moments of inertia are, in general, near the rigid-body value
(~140%*°MeV ") as expected, but show significant shell effects. The contribution of a closed shell
configuration to the moment of inertia is zero. For the rare-earth nuclei, no contribution comes from
the closed major shells N = 0, 1, 2, 3, and the main contributions are from the neutron N = 5, 6
shells and proton N = 4, 5 shells. It is well known that because of the strong spin-orbit coupling, the
high-j intruder orbits are relatively far away from the normal orbits in the same N major shell, and ;
is approximately a good quantum number. These orbits may be approximately simulated by a single-/
shell model {19,20]. In the single j model, the contribution to the moments of inertia from the particles
occupying the upper orbits is negative (d{j,) / dw > 0). This is the reason why the J, values of the
1§7Er[633]7/2 and '®Er[633]7/2 + [512]5/2 bands are larger than that of '*Er (g.b.) by about 10% (see
Table 3). For the '’Er[512]5/2 band, no neutron occupies the [633]7/2 orbit (for G = 0), hence the
J, value of '’Er[512]5/2 is larger than that of '*Er (g.b.) by about 20% (see Table 3).

(2) When the pairing interaction is taken into account, many of the CMPC are mixed into the
low-lying excited eigenstates of Hcgy. Due to the resulting destructive interference effects the
off-diagonal part of J,, (4 #»), is generally negative (see Tables 4 and 5), so the calculated moment
of inertia is strongly reduced. Physically, considering the anti-alignment effect of the pairing
interaction, this can be easily understood. In particular, when u and » are the high-j intruder orbits
near the Fermi surface, |J,,| is especially large and in fact, the reduction of the moments of inertia
due to the paring interaction mainly comes from these orbits. On the other hand, when the pairing
interaction is taken into account, the diagonal part, LJ,,, changes only a little, because the particle
occupation changes very little. From the above discussions, we can understand why the moments of
inertia of the ground bands of even-even nuclei are reduced due to the pairing interaction by a factor
of about 1/2.
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Table 5
The main off-diagonal parts of J,, [see Eq.(8)] for the '®Er
g.b., WEr[512]5/2, '9Er[633]7/2, and 'SEr, K™ = 6",
[633]17/2 + [512]5/2 bands.

27, (* MeV™)

Nilsson orbit 'SEr g.b. WBr [512]5/2 TEr (633]7/2 SEr K™ = 6~
signature o signature o signature o signature o

I v 172 —-1/2 172 —1/2 1/2 —-1/2 172 -1/2
[514]7/2 [505}9/2 | —0.16 —0.16 -0.21 -0.21 -0.14 -0.14 :
[53011/2 [521]3/2 | —0.25 -=0.25 —-0.33 -0.33 -0.21 -0.21 -0.19 -0.19
[53011/2 [521]1/2 | -0.31 -0.24 -0.34 -0.25 -0.31 -0.24 —-0.34 -0.26
[532]3/2 [523]5/2 | -0.35 -0.35 -0.38 -0.38 -0.34 -0.34 -0.14 -0.14
[532]3/2 (521]1/2 | —0.29 —-0.35 -0.28 -0.35 -0.49 -0.36 -~0.28 -0.35
[521]3/2 [523]5/2 | —0.08 -0.08 -0.11 -0.11
{521]13/2 [512]5/2 | —1.91 -1.91 1.41@ 1.97® —1.84 -1.84 0.43@ 0.58®
[523]15/2 {51417/2 | —1.55 -—1.55 —-1.42 —-1.42 -1.47 —-1.47 -1.39 -1.40
[521]1/2 [51011/2 | —0.38 —-0.32 -0.15 -0.13 -0.17 -0.14 -0.16 -0.13
[521]1/2 [512]3/2 | —0.29 —0.34 -0.09 -0.10 -0.13 -0.15 -0.09 -0.11
[512]5/2 [514]7/2 | —-0.13 -0.13 0.08® 0.09@

[512]5/2 [50317/2 | —0.18 —0.18
[514]7/2 {50519/2 | —0.06 -0.06

[660]1/2 [65113/2 | —0.28 —0.55] —0.35 -0.69 -0.28 -0.53 -0.14 -0.27
[65113/2 [642]5/2 | ~1.48 —1.46| —1.85 -1.83 -1.15 -1.26 -0.78 -0.81
[642]5/2 [63317/2 | —6.54 —6.54| —13.78 —13.78 3.87@ 3.12@ 2.43® 1.85®
[633]7/12 [624]9/2 | —6.63 —6.63 -1.85 —1.85 0.82@ 1.47® 1.06® 0.75®

[62419/2 [615]11/2] —0.20 —-0.20
[651]11/2 [64011/2 | —0.05 =-0.15

[65111/2 [642]3/2 -0.11
N = 4 shell
N = 5 shell —11.84 -3.06 -10.19 —-4.23
N = 6 shell —30.86 -36.07 +6.04 +4.08
All shells —-42.71 -39.13 -4.16 -0.15

Very small contributions |J,,| < 0.01 are omitted in this table. The positive J,, (due to blocking effects) is
indicated by @,

(3) For the 1-quasiparticle band in odd-4 nuclei and the pair-broken (2-quasiparticle) bands in
even-even nuclei, we must consider the influence of the blocking effects, which are especially
important for the low-lying excited and low-spin states. Physically, the blocking effect of an unpaired
particle will weaken the effective pairing interaction. So it is an antipairing effect and will decrease
the reduction of the moment of inertia due to pairing, or equivalently it will promote the spin alignment
(7.} along the rotating x-axis. Therefore, the moments of inertia associated with multi-quasiparticle
excitation states, in general, will be larger than those of the ground bands (the quasiparticle vacuum)
in neighboring even-even nuclei. Mathematically, the blocking effects lead to a sign change of J,; if
the orbit p or » is blocked (see Table 5) J,, will become positive when g or » is [633]7/2 for the
$7Er[633]7/2 band and when p or » is [512]5/2 for the '’Er[512]5/2 band. Our calculation shows that
the blocking of the high-j intruder orbits near the Fermi surface leads to a strong alignment of the
angular momentum because these orbits have very strong Coriolis responses. From this we can
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understand why the moment of inertia of the '“Er[633]7/2 band is much larger than that of '*®*Er (g.b.)
by about 50%. However, if the blocked level is a normal orbit, such as the neutron [512]5/2, which
has a moderate Coriolis response, the increase of the moment of inertia due to the blocking is
moderate. From this we can understand why the moment of inertia of the '“’Er[512]5/2 band is larger
than that of '®Er (g.b.) by only about 13%.

(4) However, it should be emphasized that the blocking effects in the multi-quasiparticle bands
are by no means additive. In a pair-broken (2-quasiparticle) band, e.g., in the '8Er[633]7/2 +
[512]5/2 band, the presence of the odd neutron [512]5/2 will attenuate the blocking effect on the
pairing correlation of the odd neutron [633]7/2, i.e., the blocking effect of the [633]7/2 neutron in the
18Er[633]7/2 + [512]5/2 band cannot be displayed so sufficiently as in the '“Er[633]7/2 band. The
non-additivity of the moments of inertia originates from the cancellation of the blocking (antipairing)
effects in a pair-broken band, which manifests clearly in the variation of the off-diagonal part of JW0
(with », being the blocked level). For example, for p = [642]5/2, », = [633]7/2, J,, = —13.08,6.99,
4.28#*MeV ™! in'®Er (g.b.), 'YEr[633]7/2, '®Er[63317/2 + [512]5/2, respectively. For u = [521]3/2,
vy = [512]5/2, J,, = —3.81, 3.38, 1.01#A*MeV~! in '*Er (g.b.), 'YEr[512]5/2, '®Er[633]7/2 +
[512]5/2, respectively (see Table 5). From the above discussions we can understand why the moment
of inertia of the 2-quasiparticle band '®Er{633]7/2 + [512]5/2 is almost equal to that of the
1-quasiparticle band "’Er[633]7/2. In addition, considering [633]7/2 as being a high-j intruder orbit,
but [512]5/2 being a normal orbit, we can understand why the moment of inertia of the '®Er[633]7/2
+ [512]5/2 band is still much larger than that of the '¥Er[512]5/2 band.

(5) Moreover, it is interesting to note that from Eq.(2) the experimental R ratio R,,, = 1.23, for
the 'Er (g.b.), ¥'Er[633]7/2, Er[512]5/2, and '®Er[633]7/2 + [512]5/2bands, is reproduced rather
well by the PNC calculation (R, = 1.27). Of course, in our calculation, the deformation chosen for
the multi-quasiparticle bands are the same as the quasiparticle vacuum band. The deformation change
due to the blocking effects should be taken into account in a more sophisticated calculation.

CONCLUSION

In summary, the identical 1-quasiparticle and 2-quasiparticle bands in neighboring odd- and
even-mass nuclei are recognized. The occurrence of almost identical moments of inertia is the result
of the competition among the shell effect (including deformation change), the pairing (anti-alignment)
effect, and the blocking (antipairing) effects. The observed moments of inertia of the identical
multi-quasiparticle bands are reproduced quite well by the PNC calculation, in which the blocking
effects are taken into account exactly and no free parameter is involved. This approach may be, in
principle, applied to investigate the identical SD bands and it will be addressed in a subsequent paper.
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