Jan., 1982

s, d, g 玻色子相互作用中的三种极限

凌 寅 生

摘 要

$$SU(15)\supset SU(3)\supset SO(3)$$
,
 $SU(15)\supset SU(5)\supset SO(5)\supset SO(3)$,
 $U(15)\supset U(14)\supset SO(5)\supset SO(3)$.

同时给出了能谱公式.

仿照 Arima 的 I.B.M 理论,同时存在 s, d, g 三种玻色子时,相互作用的 Hamiltonian 可以由 U(15) 群的生成元所构成,称为具有 U(15) 的群结构。一般情况下,能谱只能用数值计算;在极限情况下,能谱可以有解析表式。 应用群论的方法,可以比较方便地导出这些解析表式。

一、U(15) 群的生成元与对易关系

用 $b_{lm}^{\dagger}(l=0,2,4; m=-l,-l+1,\cdots,l-1,l)$ 表示玻色子产生算子 $s^{\dagger},d_{m}^{\dagger},$ $g_{m}^{\dagger};$ 相应的玻色子消灭算子 s,d_{m},g_{m} 记为 $b_{lm}(l=0,2,4; m=-l,-l+1,\cdots,l-1,l)$. 定义

$$\tilde{b}_{lm} = (-1)^m b_{l,-m},\tag{1}$$

在三维转动下, \tilde{b}_{lm} 与 b_{lm}^{\dagger} 一样,同为 l 阶不可约张量算子。 它们之间非零的对易关系为 $[\tilde{b}_{l,m},b_{l,m}^{\dagger}]=(-1)^{m_l}\delta_{l,l}\delta_{m_l}-m_l.$ (2)

定义 SO(3) 的耦合张量算子

$$(b_{l_1}^{\dagger} \tilde{b}_{l_2})_m^{(k)} = \sum_{m_1, m_2} \langle l_1 m_1 l_2 m_2 | k m \rangle b_{l_1 m_1}^{\dagger} \tilde{b}_{l_2 m_2}, \tag{3}$$

其中〈l₁m₁l₂m₂ | km〉为 C-G 系数。

 $(b_{l_1}^{\dagger}\tilde{b}_{l_2})_{m}^{(k)}$ $(|l_1-l_2| \leq k \leq l_1+l_2; m=-k,-k+1,\cdots k-1,k)$ 之间的对易关系为(1,2)

$$[(b_{l_1}^{\dagger}\tilde{b}_{l_2})_{m_1}^{(k_1)}, (b_{l_3}^{\dagger}\tilde{b}_{l_4})_{m_2}^{(k_2)}] = \sum_{k,Q} [k_1, k_2, k]^{\frac{1}{2}} \binom{k_1 \ k_2 \ k}{m_1 \ m_2 - Q}$$

本文 1981 年 1 月 30 日收到。

$$\cdot (-1)^{Q} \left[(-1)^{k_{1}+k_{2}+k} \begin{Bmatrix} k_{1} & k_{2} & k \\ l_{4} & l_{1} & l_{2} \end{Bmatrix} \delta_{l_{2}l_{3}} (b_{l_{1}}^{\dagger} \tilde{b}_{l_{4}})_{0}^{(k)} - \begin{Bmatrix} k_{1} & k_{2} & k \\ l_{3} & l_{2} & l_{1} \end{Bmatrix} \delta_{l_{1}l_{4}} (b_{l_{3}}^{\dagger} \tilde{b}_{l_{2}})_{0}^{(k)}, \right] (4)$$

其中

$$[k_1, k_2, k]^{\frac{1}{2}} = \sqrt{(2k_1 + 1)(2k_2 + 1)(2k + 1)}.$$
 (5)

在对易关系(4)下,耦合张量算子

 $(bl_1^*\tilde{b}_{l_2})_{+}^{k}$ $(|l_1-l_2| \le k \le l_1+l_2; m=-k, -k+1, \cdots k-1, k)$ (6) 封闭。它们的总数为 225 个,可以证明,它们是 U(15) 群的生成元^[3]。 用 s, d, g 符号表示,U(15) 群的 225 个生成元为

$$(s^{+}s)_{0}^{(0)}$$

$$(d^{+}\tilde{d})_{m}^{(k)} \quad (k = 0-4)$$

$$(s^{+}\tilde{d})_{m}^{(2)}$$

$$(d^{+}s)_{m}^{(2)}$$

$$(g^{+}\tilde{g})_{m}^{(k)} \quad (k = 0-8)$$

$$(s^{+}\tilde{g})_{m}^{(4)}$$

$$(g^{+}s)_{m}^{(4)}$$

$$(d^{+}\tilde{g})_{m}^{(k)} \quad (k = 2-6)$$

$$(g^{+}\tilde{d})_{m}^{(k)} \quad (k = 2-6)$$

在上述 225 个生成元中去迹,即可得 SU(15) 群的 224 个生成元.

由(4)式易得

 $[(b_l^{\dagger}\tilde{b}_l)_{m_l}^{(k_l)}, (b_l^{\dagger}\tilde{b}_l)_{m_l}^{(k_l)}]$

$$= \sum_{k,Q} [k_1, k_2, k]^{\frac{1}{2}} {k_1 k_2 k \choose m_1 m_2 - Q} {k_1 k_2 k \choose l l l l} (-1)^{Q} [(-1)^{k_1 + k_2 + k} - 1] (b_l^+ \tilde{b}_l)_Q^{(k)}; \quad (8)$$

$$[(b_{l_1}^+ \tilde{b}_l)_{m_1}^{(k_1)}, (b_l^+ \tilde{b}_l)_{m_2}^{(k_2)}]$$

$$= \sum_{k,0} [k_1, k_2, k]^{\frac{1}{2}} {k_1 \choose m_1 \choose m_2 - Q} {k_1 \choose l} {k_2 \choose l} {(-1)^{Q+k_1+k_2+k}} (b_{l_1}^{+} \tilde{b}_{l})_{Q}^{(k)}$$

$$(l_1 \neq l);$$

 $[(b_l^+\tilde{b}_{l_2})_{m_1}^{(k_1)}, (b_l^+\tilde{b}_{l_2})_{m_2}^{(k_2)}]$

$$= \sum_{k,Q} [k_1, k_2, k]^{\frac{1}{2}} {k_1 \choose m_1 \choose m_2 - Q} {k_1 k_2 k \choose l l_2 l} (-1)^{Q+1} (b_l^+ \tilde{b}_{l_2})_Q^{(k)}$$
(10)

$$[(b_{l_1}^+ \tilde{b}_{l_2})_{m_1}^{(k_1)}, (b_{l_1}^+ \tilde{b}_{l_2})_{m_2}^{(k_2)}] = 0 \quad (l_1 \neq l_2);$$
 (11)

 $[(b_{l_1}^{+}\tilde{b}_{l_2})_{m_1}^{(k_1)},(b_{l_2}^{+}\tilde{b}_{l_1})_{m_2}^{(k_2)}]$

$$= \sum_{k,Q} [k_{1}, k_{2}, k]^{\frac{1}{2}} {k_{1} k_{2} k \choose m_{1} m_{2} - Q}$$

$$\cdot (-1)^{Q} \left[(-1)^{k_{1}+k_{2}+k} \begin{Bmatrix} k_{1} k_{2} k \\ l_{1} l_{1} l_{2} \end{Bmatrix} (b_{l_{1}}^{+} \tilde{b}_{l_{1}})_{Q}^{(k)}$$

$$- \begin{Bmatrix} k_{1} k_{2} k \\ l_{2} l_{2} l_{1} \end{Bmatrix} (b_{l_{2}}^{+} \tilde{b}_{l_{2}})_{Q}^{(k)} \right]$$

$$(12)$$

 $(l_1 \neq l_2)$

用对易关系(4)及其推论(8)—(12), 很容易在 U(15) 群中找到下列子群:

$$(d^+\tilde{d})_m^{(k)} \quad (k = 0 - 4; m = -k, -k + 1, \dots, k - 1, k). \tag{13}$$

它们之间的对易关系

 $[(d^{+}\tilde{d})_{m_{1}}^{(k_{1})}, (d^{+}\tilde{d})_{m_{3}}^{(k_{2})}]$

$$= \sum_{k,0} [k_1, k_2, k]^{\frac{1}{2}} {k_1 k_2 k \choose m_1 m_2 - Q} {k_1 k_2 k \choose 2 2 2} (-1)^{Q} [(-1)^{k_1 + k_2 + k} - 1] (d^{+} \hat{d})^{(k)}_{Q};$$
(14)

(II) U(9) 81 个生成元为

$$(g^+\tilde{g})_m^{(k)}$$
 $(k=0-8; m=-k, -k+1, \cdots, k-1, k).$ (15)

它们之间的对易关系

 $[(g^+\tilde{g})_{m_1}^{(k_1)}, (g^+\tilde{g})_{m_1}^{(k_2)}]$

$$= \sum_{k,Q} [k_1, k_2, k]^{\frac{1}{2}} {k_1 \choose m_1 \choose m_2 - Q} {k_1 \choose 4 \choose 4 \choose 4} (-1)^{Q} [(-1)^{k_1 + k_2 + k} -1] (g^{+} \tilde{g})_{Q}^{(k)}$$
(16)

(III) U(6) 36 个生成元为

$$(s^{+}s)_{0}^{(0)}$$

$$(d^{+}\tilde{d})_{m}^{(k)} (k = 0-4)$$

$$(s^{+}\tilde{d})_{m}^{(2)}$$

$$(d^{+}s)_{m}^{(2)};$$

$$(17)$$

(IV) U(10) 100 个生成元为

(V).U(14) 196 个生成元为

$$(d^{+}\tilde{d})_{m}^{(k)} \quad (k = 0-4)$$

$$(g^{+}\tilde{g})_{m}^{(k)} \quad (k = 0-8)$$

$$(d^{+}\tilde{g})_{m}^{(k)} \quad (k = 2-6)$$

$$(g^{+}\tilde{d})_{m}^{(k)} \quad (k = 2-6).$$

$$(19)$$

从对易关系(14)易证, U(5) 群(I) 中有下列子群:

SU(5) 生成元(24 个)

$$(d^{+}\tilde{d})_{m}^{(k)} \quad (k = 1 - 4; m = -k, -k + 1, \dots, k - 1, k)$$
 (20)

SO(5) 生成元(10个)

SO(3) 生成元(3个)

$$\left(\mathbf{d}^{+}\tilde{\mathbf{d}}\right)_{m}^{(1)}.\tag{22}$$

从对易关系(16)易证, U(9) 群(II)中有下列子群:

SU(9) 生成元(80个)

$$(g^+\tilde{g})_m^{(k)}$$
 $(k=1-8; m=-k, -k+1, \cdots, k-1, k);$ (23)

SO(9) 生成元(36个)

$$(g^{+}\tilde{g})_{m}^{(1)}$$

$$(g^{+}\tilde{g})_{m}^{(3)}$$

$$(g^{+}\tilde{g})_{m}^{(5)}$$

$$(g^{+}\tilde{g})_{m}^{(7)};$$
(24)

SO(3) 生成元(3个)

$$\left(g^{+}\tilde{g}\right)_{m}^{(1)}.\tag{25}$$

在 U(6) 群(III)中有三种具有物理意义的子群链,Arima 等人对此已经进行了详细的讨论,这里不再细述 $^{(4-6)}$ 。

在 U(10) 群 (IV) 中,除有子群 U(9) 外,尚有子群

SO(10) 生成元(45个)

$$(g^{+}\tilde{g})_{m}^{(1)}$$

$$(g^{+}\tilde{g})_{m}^{(3)}$$

$$(g^{+}\tilde{g})_{m}^{(5)}$$

$$(g^{+}\tilde{g})_{m}^{(7)}$$

$$(s^{+}\tilde{g})_{m}^{(4)} + (g^{+}s)_{m}^{(4)}$$

$$(26)$$

利用这些生成元,很容易构造群链

$$U(15)\supset U(6)\otimes U(9)$$

$$U(15)\supset U(5)\otimes U(10)$$

$$U(15)\supset U(1)\otimes U(14)\supset U(1)\otimes (U(5)\otimes U(9)).$$
(27)

如果相互作用的 Hamiltonian 可以表成有关群链中各子群的 Casimir 算子的函数,则在由 s^+,d^+,g^+ 所生成的玻色空间中,按照有关的群链来划分态,就可以得到 Hamiltonian H 的本征态,能谱也可以有解析表达式。但用(27)式中的群链来构造 Hamiltonian H,参数一般比较多,我们引入下面的群链

$$SU(15)\supset SU(3)\supset SO(3),$$

 $SU(15)\supset SU(5)\supset SO(5)\supset SO(3),$ (28)
 $U(15)\supset U(14)\supset SO(5)\supset SO(3).$

这时构造所得的唯象 Hamiltonian 包含的参数个数分别只有 2、3、4 个。

算子 bim, bim 可看成为在群链

$$SU(15)\supset SU(3)\supset SO(3)\supset SO(2)$$
. (29)

下按下列一系列不可约表示变换的张量算子

$$b_{lm}^{+} = T\{[1\bar{0}](4,0)\}lm, \tag{30}$$

$$\tilde{b}_{lm} = T\{[0\bar{1}](0,4)\}lm, \tag{31}$$

其中[$1\bar{0}$]为由 s^+ , d^+ , g^+ 玻色子所荷载的 SU(15) 群的初等表示,[$0\bar{1}$]为对应的共轭表示。(λ , μ) 为 SU(3) 群不可约表示的标志,与配分(f_1 , f_2)间的关系为

$$\lambda = f_1 - f_2, \quad \mu = f_2. \tag{32}$$

在 SU(15) 群下

$$[1\overline{0}] \otimes [0\overline{1}] = [1\overline{1}] + [0\overline{0}],$$
 (33)

在 SU(3) 群下

$$(4,0)\otimes(0,4) = (4,4)+(3,3)+(2,2)+(1,1)+(0,0)$$
 (34)

根据算子耦合的理论^[2] 可知,利用不可约张量算子 b_{lm}^{+} , \tilde{b}_{lm} ,可以耦合成不可约张量算子 $X\{[1\overline{1}](1,1)\}LM$

$$= \sum_{\substack{l_1m_1\\l_2m_2\\}} \langle [1\bar{0}](4,0)l_1m_1, [0\bar{1}](0,4)l_2m_2|[1\bar{1}](1,1)LM \rangle b_{l_1m_1}^{+} \tilde{b}_{l_2m_2}$$

$$(L=1,2) \tag{35}$$

应用 Racah 因式分解引理,广义耦合系数可以写成一系列 I.S.F 和 C-G 系数的乘积 $\langle [1\bar{0}](4,0)l_1m_1,[0,\bar{1}](0,4)l_2m_2|[1\bar{1}](1,1)LM \rangle$

$$= \langle [1\overline{0}](4,0), [0\overline{1}](0,4) | [1\overline{1}](1,1) \rangle \langle (4,0)l_1, (0,4)l_1 | (1,1)L \rangle \times \langle l_1 m_1 l_2 m_2 | LM \rangle,$$
(36)

 $SU(15) \supset SU(3)$ 的 I.S.F

$$\langle [1\overline{0}](4,0), [0\overline{1}](0,4) | [1\overline{1}](1,1) \rangle = 1,$$
 (37)

 $\therefore X\{[1\overline{1}](1,1)\}LM$

$$= \sum_{\substack{l_1m_1\\l_2m_2\\l_1l_2}} \langle (4,0)l_1, (0,4)l_2\|(1,1)L\rangle \langle l_1m_1l_2m_2|LM\rangle b_{l_1m_1}^{\dagger} \tilde{b}_{l_2m_2}$$

$$= \sum_{l_1,l_2} \langle (4,0)l_1(0,4)l_2\|(1,1)L\rangle (b_{l_1}^{\dagger} \tilde{b}_{l_2})_{M}^{(L)}$$
(38)

 $\langle (4,0)l_1,(0,4)l_2||(1,1)L\rangle$ 为 $SU(3)\supset SO(3)$ 的 I.S.F.,可以通过查表^[7] 或计算求出.

因为[11]为 SU(15) 群的正则表示,(1,1)为 SU(3) 群的正则表示,L=1,2 时(38) 式所给出的 8 个算子

$$X\{[1\overline{1}](1,1)\}LM, \quad (L=1,2; M=-L,-L+1,\cdots,L-1,L), \quad (39)$$

$$SU(15)\supset SU(3) \quad (40)$$

群链的生成元.

必为

应用 Vergados 的 $SU(3)\supset SO(3)$ I.S.F 表^[7] 可得 $SU(15)\supset SU(3)$ 的 8 个生成元为

$$X\{[1\overline{1}](1,1)\}1M = \sqrt{\frac{1}{7}} (d^{+}\widetilde{d})_{M}^{(1)} + \sqrt{\frac{6}{7}} (g^{+}\widetilde{g})_{M}^{(1)},$$

$$X\{[1\overline{1}](1,1)\}2M = \sqrt{\frac{1}{70}} \left\{ 4\sqrt{\frac{7}{15}} \left[(s^{+}\widetilde{d})_{M}^{(2)} + (d^{+}s)_{M}^{(2)} \right] - 11 \cdot \sqrt{\frac{2}{21}} (d^{+}\widetilde{d})_{M}^{(2)} + 36 \cdot \sqrt{\frac{1}{105}} \left[(d^{+}\widetilde{g})_{M}^{(2)} + (g^{+}\widetilde{d})_{M}^{(2)} \right] - 2 \cdot \sqrt{\frac{33}{7}} (g^{+}\widetilde{g})_{M}^{(2)} \right\} (41)$$

假如相互作用的 Hamiltonian 可以表成

$$H = -\varepsilon Q \cdot Q - \varepsilon' \mathcal{L} \cdot \mathcal{L} \tag{42}$$

其中 L 为角动量算符

$$L_{\mathbf{M}} = \sqrt{70} X\{[1\bar{1}](1,1)\}1M \tag{43}$$

Q 为四极矩算符

$$Q_{M} = \sqrt{70} X\{[1\bar{1}](1,1)\}2M. \tag{44}$$

在 s⁺, d⁺, g⁺ 所生成的玻色空间中,按照群链

$$SU(15)\supset SU(3)\supset SO(3)$$
 (45)

分类的态,即为H的本征态,可记为

$$|[N](\lambda,\mu)KL;\alpha\rangle,$$
 (46)

其中 [N] 表示 SU(15) 群的全对称表示; (λ, μ) 为 SU(3) 群不可约表示的标志, α 表示所有其它所需要的附加量子数、能谱公式

$$\langle H \rangle = \left(\frac{3}{4} \varepsilon - \varepsilon'\right) L(L+1) - \varepsilon [\lambda^2 + \mu^2 + \lambda \mu + 3(\lambda + \mu)]. \tag{47}$$

在群链

$$SU(15)\supset SU(5)\supset SO(3)\supset SO(2)$$
 (48)

下, b_{lm}^+ , \tilde{b}_{lm} 可看成为不可约张量算子

$$b_{lm}^{+} = T\{[1\bar{0}](2000)\}lm, \tag{49}$$

$$\tilde{b}_{lm} = T\{[0\bar{1}](2222)\}lm. \tag{50}$$

其中(f1f2f3f4)为标志 SU(5) 群不可约表示 Young 图的配分.

因为在 SU(15) 群下

$$[1\bar{0}] \otimes [0\bar{1}] = [1\bar{1}] + [0\bar{0}], \tag{33}$$

在 SU(5) 群下

$$(2000)\otimes(2222) = (4222) + (2111) + (0000)$$
 (51)

所以,利用 b_{lm}^{\dagger} , \tilde{b}_{lm} 可耦合成不可约张量算子

 $X\{[1\bar{1}](2111)\}LM$

- $= \sum_{\substack{l_1m_1\\l_2m_2\\l_3m_2}} \langle [1\bar{0}](2000)l_1m_1, [0\bar{1}](2222)l_2m_2 | [1\bar{1}](2111)LM \rangle b_{l_1m_1}^{\dagger} \tilde{b}_{l_2m_2}$
- $= \sum_{\substack{l_1m_1\\l_2m_2}} \langle [1\bar{0}](2000), [0\bar{1}](2222) ||[1\bar{1}](2111)\rangle \langle (2000)l_1, (2222)l_2||(2111)L\rangle$

$$\times \langle l_{1}m_{1}l_{2}m_{2}|LM\rangle b_{l_{1}m_{1}}^{\dagger}\tilde{b}_{l_{2}m_{2}}. \quad (L=1,2,3,4)$$
(52)

SU(15)⊃SU(5)的 I.S.F

$$\langle [1\bar{0}](2000), [0\bar{1}](2222) || [1\bar{1}](2111) \rangle = 1.$$
 (53)

(52)式可以写成

$$X\{[1\overline{1}](2111)\}LM = \sum_{l_1 l_2} \langle (2000)l_1, (2222)l_2 \| (2111)L \rangle (b_{l_1}^{\dagger} \tilde{b}_{l_2})_{\mathcal{U}}^{(L)}, \qquad (54)$$

其中〈(2000)l₁,(2222)l₂||(2111)L〉为 SU(5)⊃SO(3)的 1.S.F.

利用 I.S.F 的计算公式可得[8]

 $\langle (2000)l_1, (2222)l_2||(2111)L\rangle = (-1)^{\eta_1}\langle (2222)l_2, (2000)l_1||(2111)L\rangle$

$$= (-1)^{\eta_1} \sqrt{\frac{12}{7}} \langle (1111)2(1000)2 \| (2111)L \rangle \langle (2222)l_2(1000)2 \| (111)2 \rangle$$

$$\cdot U(l_2 2 L_2; 2l_1), \tag{55}$$

其中 U(l₂2L2; 2l₁) 为 Racah 系数

$$U(l_{2}2L2; 2l_{1}) = (-1)^{l_{1}+2+L+2}[2, l_{1}]^{\frac{1}{2}} \begin{Bmatrix} l_{2} & 2 & 2 \\ 2 & L & l_{1} \end{Bmatrix}$$

$$= (-1)^{l_{1}+L}[2, l_{1}]^{\frac{1}{2}} \begin{Bmatrix} l_{1} & l_{2} & L \\ 2 & 2 & 2 \end{Bmatrix}, \tag{56}$$

 η_1 为只跟 SU(5) 的表示 (2000)、(2222)、(2111) 有关的相因子,任意选择,不影响 $X\{[1\overline{1}](2111)\}LM$ 为群链

$$SU(15)\supset SU(5)$$
 (57)

生成元的性质. 今后我们选择 $\eta_1 = 0$.

由 SU(5)⊃SO(3) I.S.F 的正交关系、倒易关系¹² 可得

$$\langle (1111)2, (1000)2 || (2111)L \rangle = 1, (L = 1, 2, 3, 4)$$
 (58)

 $\langle (2222)l_2, (1000)2||(1111)2\rangle$

$$= (-1)^{\eta_2} \cdot \sqrt{\frac{5(2l_2+1)}{15 \times 5}} \langle (1000)2, (1000)2 \| (2000)l_2 \rangle$$

$$= (-1)^{\eta_2} \cdot \sqrt{\frac{1}{15}} \cdot [l_2]^{\frac{1}{2}}. \tag{59}$$

相因子 η_2 亦只跟 SU(5) 群的表示有关,可选为零.

把(56)、(58)、(59)代入(55)得

$$\langle (2000)l_1, (2222)l_2 \| (2111)L \rangle = (-1)^{l_2+L} \sqrt{\frac{4}{7}} [l_1, l_2]^{\frac{1}{2}} \begin{Bmatrix} l_1 & l_2 & L \\ 2 & 2 & 2 \end{Bmatrix}$$
 (60)

由此得

$$X\{[1\bar{1}](2111)\}1M = \sqrt{\frac{1}{7}} (d^+\tilde{d})_M^{(1)} + \sqrt{\frac{6}{7}} (g^+\tilde{g})_M^{(1)},$$

 $X\{[1\overline{1}](2111)\}2M$

$$= 2 \cdot \sqrt{\frac{1}{35}} \left[(s^{+}\tilde{d})_{M}^{(2)} + (d^{+}s)_{M}^{(2)} \right] - \frac{3}{7} \cdot \sqrt{\frac{1}{7}} \left(d^{+}\tilde{d})_{M}^{(2)} + \frac{3}{7} \cdot \sqrt{\frac{22}{7}} \left(g^{+}\tilde{g} \right)_{M}^{(2)} + \frac{12}{7} \cdot \sqrt{\frac{1}{35}} \left[(d^{+}\tilde{g})_{M}^{(2)} + (g^{+}\tilde{d})_{M}^{(2)} \right],$$

$$X\{[1\tilde{1}](2111)\}3M = -\frac{8}{7} \cdot \sqrt{\frac{1}{7}} (d^{+}\tilde{d})_{M}^{(3)} + \frac{3}{7} \cdot \sqrt{\frac{11}{7}} (g^{+}\tilde{d})_{M}^{(3)} + \frac{3}{7} \cdot \sqrt{\frac{10}{7}} [(d^{+}\tilde{d})_{M}^{(3)} + (g^{+}\tilde{d})_{M}^{(3)}],$$

$$X\{[1\bar{1}](2111)\}4M = \frac{4}{7} \cdot \sqrt{\frac{1}{7}} \left(d^{+}\tilde{g}\right)_{M}^{(4)} + \frac{1}{7} \cdot \sqrt{\frac{143}{35}} \left(g^{+}\tilde{d}\right)_{M}^{(4)} + \frac{1}{7} \cdot \sqrt{\frac{110}{7}} \left[\left(d^{+}\tilde{d}\right)_{M}^{(4)} + \left(g^{+}\tilde{d}\right)_{M}^{(4)}\right] + 2 \cdot \sqrt{\frac{1}{35}} \left[\left(s^{+}\tilde{d}\right)_{M}^{(4)} + \left(g^{+}s\right)_{M}^{(4)}\right],$$

$$(61)$$

因为(2111)是 SU(5) 群的正则表示,(61)中的24个算子一定是群链(57)的生成元。 如果我们令

$$U_m^{(k)} = \sqrt{7} X\{[1\bar{1}](2111)\}km, \quad (k = 1, 2, 3, 4)$$
 (62)

则 $U_{m}^{(k)}$ 之间的对易关系即为(14)。

由第一节中的讨论可知

$$U_m^{(1)} = \sqrt{7} X\{[1\bar{1}](2111)\} 1_m, \quad U_m^{(3)} = \sqrt{7} X\{[1\bar{1}](2111)\} 3_m, \tag{63}$$

为 SO(5) 群的生成元;

$$U_m^{(1)} = \sqrt{7} X\{[1\bar{1}](2111)\}1m \tag{64}$$

为 SO(3) 群的生成元。

采用[3]中的定义, SU(5), SO(5), SO(3) 群的二次 Casimir 算符为

$$C_{2SU(5)} = 5 \sum_{k=1,2,3,4} (-1)^k \cdot [k]^{1/2} (U^{(k)} \cdot U^{(k)})_0^{(0)}, \tag{65}$$

$$C_{250(5)} = 5 \sum_{k=1,3} (-1)^k \cdot [k]^{\frac{1}{2}} (U^{(k)} \cdot U^{(k)})_0^{(0)}, \tag{66}$$

$$C_{2SO(3)} = L \cdot L, \tag{67}$$

其中

$$L_m = \sqrt{10} U_m^{(1)}. {68}$$

如果相互作用的 Hamiltonian 可以表成

$$H = \varepsilon_1 C_{2SU(5)} + \varepsilon_2 C_{2SO(5)} + \varepsilon_3 C_{2SO(3)}, \tag{69}$$

则在 s+, d+, g+ 所生成的玻色空间中,按照群链

$$SU(15)\supset SU(5)\supset SO(5)\supset SO(3) \tag{70}$$

分类的态即为本征态,可用量子数

$$|[N](f_1f_2f_3f_4)(w_1w_2)L_{\alpha}\rangle \tag{71}$$

标志.其中 [N] 为 SU(15) 群的全对称表示; $(f_1f_2f_3f_4)$ 为标志 SU(5) 群不可约表示 Young 图的配分; (w_1w_2) 标志 SO(5) 群的不可约表示; L 为角动量; α 表示所有其它附加的量子数, 在上述本征态中,Casimir 算子的本征值为 [3]

$$\langle C_{2SU(5)} \rangle = [f_1(f_1 - 1) + f_2(f_2 - 3) + f_3(f_3 - 5) + f_4(f_4 - 7)] - \frac{n^2 - 25n}{5}, (72)$$

其中

$$n = f_1 + f_2 + f_3 + f_4. (73)$$

$$\langle C_{250(5)} \rangle = \frac{1}{2} [w_1(w_1 + 3) + w_2(w_2 + 1)],$$
 (74)

$$\langle C_{250(3)} \rangle = L(L+1). \tag{75}$$

能谱公式

$$\langle H \rangle = \varepsilon_1 \left\{ \left[f_1(f_1 - 1) + f_2(f_2 - 3) + f_3(f_3 - 5) + f_4(f_4 - 7) \right] - \frac{n^2 - 25n}{5} \right\}$$

$$+ \varepsilon_2 \cdot \frac{1}{2} \left[w_1(w_1 + 3) + w_2(w_2 + 1) \right] + \varepsilon_3 L(L + 1).$$
 (76)

从 SU(15) 的全对称表示 [N] 向 SU(5) 约化时,除全对称表示外,还会出现非全对称表示,所以 SU(5) 的不可约表示要用 Young 图($f_1f_2f_4$)标志。这是和 Arima 的 SU(6) SU(5) 极限不同的地方。

由第一节中的讨论可知,

$$(d^{+}\tilde{d})_{m}^{(k)} \quad (k = 0-4)$$

$$(g^{+}\tilde{d})_{m}^{(k)} \quad (k = 0-8)$$

$$(d^{+}\tilde{d})_{m}^{(k)} \quad (k = 2-6)$$

$$(g^{+}\tilde{d})_{m}^{(k)} \quad (k = 2-6)$$

$$(19)$$

为 U(14) 群的生成元;由第三节中的讨论可知

$$U_m^{(1)} = (d^+\tilde{d})_m^{(1)} + \sqrt{6} (g^+\tilde{g})_m^{(1)},$$

$$U_m^{(3)} = -\frac{8}{7} (d^+\tilde{d})_m^{(3)} + \frac{3}{7} \cdot \sqrt{11} (g^+\tilde{g})_m^{(3)} + \frac{3}{7} \cdot \sqrt{10} [(d^+\tilde{g})_m^{(3)} + (g^+\tilde{d})_m^{(3)}].$$
(63')

为 SO(5) 群的生成元;

$$U_m^{(1)} = (d^+\tilde{d})_m^{(1)} + \sqrt{6} (g^+\tilde{g})_m^{(1)}$$
(64')

为 SO(3) 群的生成元. 因此,在 U(15) 群中可得群链

$$U(15)\supset U(14)\supset SO(5)\supset SO(3). \tag{77}$$

如果相互作用的 Hamiltonian 可以表示成

$$H = \varepsilon_1 C_{1U(14)} + \varepsilon_2 C_{1U(14)}^2 + \varepsilon_3 C_{2SO(5)} + \varepsilon_4 C_{2SO(3)}$$
 (78)

其中 C_{1U(14)} 为 U(14) 群的一次 Casimir 算符:

$$C_{1U(4)} = \sum_{m} d_m^+ d_m + \sum_{m} g_m^+ g_m,$$
 (79)

则在群链(77)的分类下,可以得到本征态

$$|[N], n_{d}+n_{g}, (w_{1}w_{2})L_{i}\alpha\rangle$$
(80)

其中 $n_d + n_g$ 表示 d 玻色子与 g 玻色子粒子数之和,标志了 U(14) 群的全对称表示; α 为在群链(78)的分类下,所需要附加的量子数.

本征值

$$\langle H \rangle = \varepsilon_1 (n_d + n_g) + \varepsilon_2 (n_d + n_g)^2 + \varepsilon_3 \cdot \frac{1}{2} [w_1(w_1 + 3) + w_2(w_2 + 1)] + \varepsilon_4 L(L + 1).$$
(81)

当玻色子总数N一定时, $n_d + n_g$ 可以取值 $0, 1, 2, \dots, N$.

因此,(81)中的第一项为简谐振动的能量。

五、和实验的比较

 $SU(15) \supset SU(3)$ 极限, $SU(15) \supset SU(5)$ 极限和 $U(15) \supset U(14)$ 极限中的 Hamiltonian,分别和 Arima 理论中的 $SU(6) \supset SU(3)$, $SU(6) \supset SO(6)$ 和 $U(6) \supset U(5)$ 极限中的 Hamiltonian 形式相同或者很相象:

s, d IBM	s, d, g IBM
I. U(6)⊃U(5)⊃SO(5)⊃SO(3) 极限	I. U(15)⊃U(14)⊃SO(5)⊃SO(3) 极限
$H = \varepsilon_1 C_{1U(5)} + \varepsilon_2 C_{1U(5)}^2 + \varepsilon_3 C_{2SO(5)} + \varepsilon_4 C_{2SO(3)}$ II. $SU(6) \supset SU(3) \supset SO(3)$ 极限	H = $\varepsilon_1 C_{1U(14)} + \varepsilon_2 C_{1U(14)}^2 + \varepsilon_3 C_{250(5)} + \varepsilon_4 C_{250(3)}$ II. $SU(15) \supset SU(3) \supset SO(3)$ 极限
$H = -\varepsilon Q \cdot Q - \varepsilon' L \cdot L = \varepsilon_1 C_{25U(3)} + \varepsilon_2 C_{25O(3)}$	$H = -sQ \cdot Q - s'L \cdot L = s_1C_{2SU(3)} + s_2C_{2SO(3)}$ $H = -sQ \cdot Q - s'L \cdot L = s_1C_{2SU(3)} + s_2C_{2SO(3)}$
III. $SU(6) \supset SO(6) \supset SO(5) \supset SO(3)$ 极限 $H = \varepsilon_1 C_{2SO(6)} + \varepsilon_2 C_{2SO(5)} + \varepsilon_3 C_{2SO(3)}$	III. $SU(15) \supset SU(5) \supset SO(5) \supset SO(3)$ 极限 $H = \varepsilon_1 C_{2SU(5)} + \varepsilon_2 C_{2SO(5)} + \varepsilon_3 C_{2SO(3)}$

表 1 U(15) 的全对称表示[5]按群链 U(15) \(\to U(14) \(\to SO(5) \) \(\to SO(3)\) 的约化

U(15)	U(14)	SO(5)		SO(3)
[<i>N</i>]	[n _{d+g}]	(ω_1, ω_2)	n_{Δ}	L
[5]	[0]	(0, 0)	0	0
	[1]	(2, 0)	0	4, 2
	[2]	(4, 0)	0	8, 6, 5, 4
			1	2
		(2, 2)	0	6, 4, 3, 0
			1,	2
	[3]	(6, 0)	0	12, 10, 9, 8, 7, 6
			1	6, 4, 3
		j j	2	0
	[4]	(8, 0)	0	16, 14, 13, 12, 11, 10, 9, 8
		-	1	10, 8, 7, 6, 5
		ŀ	2.	4, 2
	[5]	(10, 0)	0	20, 18, 17, 16, 15, 14, 13, 12, 11, 10
	_		1	14, 12, 11, 10, 9, 8, 7
1			2	8, 6, 5, 4
			3	2

由于引入了 8 玻色子,表示空间扩大,这给态的标志增加了麻烦,但是,可以包含比较多的谱项。在 Arima 的理论中,当玻色子总数为N时,角动量的取值只能从 0-2N,而且其中不包含 L=1 与 2N-1 的项。引进 8 玻色子后,角动量的取值能从 0-4N, L=1 与 2N-1 的正字称项也能够得到说明。因此,大角动量项与 1+ 项、 $(2N-1)^+$ 项能谱的出现,可以看作为存在高角动量玻色子的信息。

例 1 ¹¹Cd₂₈

 1 1

U(15)的全对称表示[5]按群链

$$U(15)\supset U(14)\supset SO(5)\supset SO(3) \tag{77'}$$

的约化见表 1. U(14) 的全对称表示 [3—5] 向 SO(5) 约化时,我们只列出了 SO(5) 的 w_1 最大的全对称表示。只要(81)式中的参数 ε_3 < 0,可以认为这些表示所给出的能级比较低。

记 $n_{d+g} = n_d + n_g$, 当我们只考虑 SO(5) 的对称性最高的全对称表示 $(2n_{d+g}, 0)$ 时,能谱公式(81)可以改写为

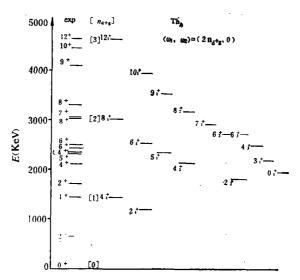
$$\langle H \rangle = \varepsilon_1 n_{d+g} + \varepsilon_2 n_{d+g}^2 + \varepsilon_3 \cdot n_{d+g} (2n_{d+g} + 3) + \varepsilon_4 L(L+1)$$

$$= a n_{d+g} + 6n_{d+g}^2 + \varepsilon_4 L(L+1). \tag{82}$$

其中

$$a = \varepsilon_1 + 3\varepsilon_3, \quad b = \varepsilon_2 + 6\varepsilon_3.$$
 (83)

取 a = 1394 keV. b = -250.3 keV. $\epsilon_4 = 17.50 \text{keV}$. 计算所得的 $\mathfrak{C}^{\text{Cd}_{50}}$ 的能级如图 1,表 2 所示. 这里只调了 3 个参数,理论和实验的符合是满意的.



例 2 176Hf₁₀₄

肾Hf104 具有转动谱,它的能谱中有 1+ 项。

增 Hf_{104} 的玻色子总数 N=16. SU(15) 的全对称表示[16]向 SU(3) 约化时可得 [16] = $(64,0)\oplus(60,2)\oplus(58,3)\oplus(56,4)\oplus\cdots$ (84)

由此可得 26Hf104 的理论能谱如图 2 所示。

4660

(4,+)

2279

	M = () = () milk I to 30 indexpend in 300 indexpend				
L*	Eth(keV)	E _{exp} ((keV)	L*	E _{th} (keV)	E _{exp} (keV)
0,+	0	0	6,+	2522	2492
2,+	1248	633	62+	2664	2503
4,+	1494	1494	63+	2664	
2,+	1893	1717	7 _i +	2909	3084
0,+	1929		8,+	3047	3044
42+	2137	2105	8,+	3189	3367
3,+	2139		(9 ₁ +)	3504	4121
5 ₁ +	2312	2331	10,+	3854	4436

表 2 $U(15) \supset U(14)$ 极限下 $\frac{10}{4}$ Cd, 能级理论值与实验值的比较

参数 $a=1394 {\rm keV}$. $b=-250.3 {\rm keV}$. $e_4=17.50 {\rm keV}$. 实验数据取自 Nuclear Data Sheets 1980. 7 Vol. 30 No.

12,+

4659

2339

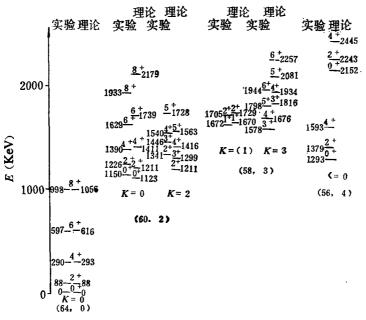


图 2 SU(15)⊃SU(3) 极限下 ; fHf₁₀₄ 能谱的理论值与实验值的比较 参数 ε = 2.944keV; ε' = - 12.46keV 实验数据取自 Nuclear Data Sheets 19 (1976), 383.

例 3 204Pb₁₂₂

 $^{201}_{82}$ Pb₁₂₂ 的玻色子总数 N=2,应用 Arima 理论只能描述 4 个谱项 (图 3).

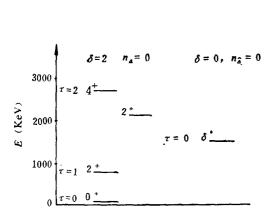


图 3 SU(6) ¬SU(3) 极限下 ¹⁰⁴Pb₁₂₂ 的理论 能谱态矢量的标记: |[N] στn_ΔLM>

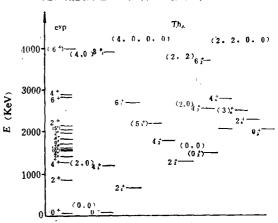


图 4 SU(15) ⊃SU(5) 极限下 ²⁰⁴e₂Pb₁₂₂ 的能谱 参数 ε₁ = 117keV. ε₂ == 70keV. ε₃ = 40keV. (f₁, f₂, f₃, f₄) 为 SU(5) 群不可约表示的标志, (ω₁, ω₂) 为 SO(5) 群不可约表示的标志

在 SU(15)⊃SU(5) 极限中,群的约化为

表 3 SU(15)⊃SU(5)⊃SO(5)⊃SO(3) 的约化

SU(15) [N]	SU(5) (f_1, f_2, f_3, f_4)	$SO(5) \\ (\boldsymbol{w}_1, \boldsymbol{w}_2)$	SO(3) L
[0]	(0, 0, 0, 0)	(0, 0)	0
[1]	(2, 0, 0, 0)	(2, 0)	4, 2
ļ	1	(0, 0)	0
[2]	(4, 0, 0, 0)	(4, 0)	8, 6, 5, 4, 2
	į.	(2, 0)	4, 2
1		(0, 0)	0
	(2, 2, 0, 0)	(2, 2)	6, 4, 3, 2, 0
į	į	(2, 0)	4, 2
		(0, 0)	0

表 4 SU(15) ⊃ SU(5) 极限下 👯 Pb.1.2 能谱理论值与实验值的比较

L*	$E_{\rm th}({ m keV})$	E _{exp} (keV)	L*	$E_{\rm th}({ m keV})$	$E_{\rm exp}({ m keV})$
0,+	0	0	(5,)+	2180	2065
2,+	590	899	2,+	2204	2103
4,+	1150	1274	$(3_i)^+$	2444	1605
22+	1220	1354	4,+	2554	1817
(0 ₂ +)	1404	1582	6,+	2660	2808
42+	1780	1563	4,+	2764	2897
0,+	1964	1728	(6,+)	3644	3996
2,+	1994	1958	8 ₁	3860	

参数 $s_1 = 117 \text{keV}$. $s_2 = 70 \text{keV}$. $s_3 = 40 \text{keV}$.

实验数据取自 Nuclear Data Sheets 1979. 8 Vol 27. No. 4

玻色子总数 $N \leq 2$ 时,态可以标记为

$$|[N](f_1, f_2, f_3, f_4)(w_1, w_2)LM\rangle.$$

当能谱公式(76)中的参数取成 $\varepsilon_1 = 117 \text{keV}$, $\varepsilon_2 = 70 \text{keV}$, $\varepsilon_3 = 40 \text{keV}$ 时,理论计算的能谱数值和实验的比较见图 4,表 4:

综观偶偶核的能谱,在低能区大角动量的能级比较少见, $s < d \mid IBM \mid$ 是一种很好的近似。在高能区可以考虑引进高角动量的玻色子。

参考文献

- [1] F. Iachello: An Introduction to the interacting boson model dutch summer school (1980).
- [2] B. G. Wybourne: Classical Groups For Physicists A Wiley-Interscience Publication (1974).
- [3] B. F. 贝衣曼著 石生明译 群论及其在核谱学中的应用,上海科学技术出版社,(1963).
- [4] A. Arima and F. Iachello. Ann. Phys., 99(1976), 253.
- [5] A. Arima and F. Iachello: Ann. Phys., 111(1978), 201.
- [6] A. Arima and F. Iachello: Ann. Phys., 123(1979), 468.
- [7] J. D. Vergados: Nucl. Phys., A111(1968), 681.
- [8] 陈金全、王凡、高美娟,物理学报,27(1978),31.

THREE LIMITS IN THE INTERACTIONS OF THE s, d, g, BOSONS

LING YIN-SHENG

(Jiangsu Teachers' College Ling Yinsheng)

ABSTRACT

In the I. B. M., when s, d, g bosons are presented, the boson Hamiltonian has the structure of group U(15). This paper deals with the various chains of subgroups of group U(15). Especially, the following chains:

$$SU(15) \supset SU(3) \supset SO(3),$$

 $SU(15) \supset SU(5) \supset SO(5) \supset SO(3),$
 $U(15) \supset U(14) \supset SO(5) \supset SO(3).$

are studied in detail, The formulae of the energy spectra are also given.