5500 米高度高能 γ 线的特性

任敬儒 陆穗苓 苏 实 王允信 王殿臣 (中国科学院商能物理研究所)

王承瑞何 瑁 张乃健 曹培园 李金玉

陈允鸿 王士智 (郑州大学)

摛 婯

用设置在西藏甘巴拉山(海拔 5500 米,大气深度 520 克/[厘米]²)上的乳胶 室,研究了高能 r 线的特性。得出了高能 r 线的垂直流强、积分能谱、天顶角分 布及其在大气中的衰减长度。把所得到的结果与同类工作相应的结果进行了比 较,彼此是一致的。同时,我们还选出部分 r 族进行了分析,得到了族中 r 线成 员的能谱、分数能谱及平均横动量,并对所得到的结果进行了讨论。

一、引言

到目前为止,用高山乳胶室对超高能现象进行的研究,已取得了许多有价值的结果^(1,1), 它为对能量超过 100 TeV 的超高能核作用的研究提供了许多有用的信息.在我国,用高 山乳胶室研究超高能核现象的工作,虽然刚刚开始不久,但已取得了一些成果^(1,4).1977 年 8 月在西藏甘巴拉山上建的乳胶室 (*5),分为厚、薄两部分.经过对厚部分的扫描与 测量,共得到 644 个单个簇射事例,其中的 142 个单个簇射事例,组成了簇射斑数 n_r 不同 的族 23 个.本文对其中的单r线事例进行了分析,得出 5500 米高度处高能r线的垂直 流强、能谱、天顶角分布以及r线在大气中的衰减长度.并且把所得到的这些结果与同类 工作进行比较.此外,选出总观测能 $\Sigma E_r > 10$ TeV、簇射斑数 $n_r \ge 4$ 、成员的能量 $E_r \ge$ 2 TeV 的r族作了初步分析,得出r族中成员的能谱、分数能谱及平均横动量.并对这些 结果作了讨论.

二、实验情况

本工作所用的那部分厚乳胶室,由 50 个结构完全相同的单元组成。铺设总面积为 5

本文1980年5月20日收到.

米²,厚度为 10 厘米铅。在每个单元中,铅板的尺寸为 30 × 37 [厘米]², X光片的面积为

27.9 × 35.6 [厘米]². 图 1 是乳胶室单元结构的剖面图。如图所示,自室顶往下数,在 3 厘米厚的铅板下放置第一层感光材料,以下 每隔 1 厘米厚的铅板放置一层感光材料。以下 每隔 1 厘米厚的铅板放置一层感光材料。每 个单元中,共计有 8 层感光材料,10 厘米厚 的铅。每层感光材料中,含有两张 X 光片,一 张是上海 5 F 型高对比度 X 光片,另一张是 天津工业 III 型 X 光片。

该乳胶室(*****5)于1977年8月建立, 1978年解体,共曝光257天。回收的片子随 即运至北京处理,处理时的室温恒定在(18±

0.4)℃. 将处理好的属于同一感光层中的两张 X 光片,按照预先用 X 光机打好的标志 重叠起来,在看片灯下用肉眼直观扫描,寻找由电磁作用或强子的核作用形成的簇射黑 斑.对扫出的黑斑在测量显微镜 (MBH-8, MBH-9)下反复进行观察、审核,以证认出事例 斑,剔除假象.对于判定为事例的黑斑,要沿其纵向上下追踪,直至追到室内尽可能的远 处,以得到事例在室内发展的概貌.

对得到证认的事例,进行了天顶角的测量和不同深度处 X 光片上黑斑黑度的 测量。 作黑度测量时,采用的观测孔面积为 100 × 100 [微米]²。在黑度-能量曲线上找出测得 的黑度相对应的能量值,从而定出事例的能量^[4]。

三、事例的起始点分布

为了区分 7 线与强子,我们作了全部被观测到的事例的起始点的分布。将实验观测

到的簇射纵向发展的情况,与根据三维级联簇 射理论计算得到的转换曲线相比较,确定出每 个事例簇射发展的起始点在室内的深度位置: 全部事例的起始点分布,如图 2 所示。

由于r线在铅中质化的平均自由程远小于 强子在铅中的平均碰撞自由程,因此,在乳胶室 的上部所观测到的簇射斑,主要是由r线引起 的,而在室内足够的深度以下所观察到的簇射 斑,主要是强子引起的.只要室的厚度足够,便 可根据事例的起始点的分布,从统计上将两者 区分开来.

r线质化的自由程可视为一个随机变量,其分布可用一正态分布(高斯分布)来描述。 由图 2 可以看出,实验曲线(实线)在 t = 1.2 c. u. 处有一个峰值。我们可用一个分布中心 (即数学期望值)为 $t_0 = 1.2$ c. u. 和均方差为 $\sigma = 1.7$ 的正态分布(图中的虚线)与该峰值 部分的实验曲线得到最佳拟合、其中的 t_0 的取值与 r 线在铅中质化的平均自由程 8.4 克 /[厘米]²(相当于 1.3 c. u.)^[5] 很相近.显然,峰值所在的深度位置,就是 r 线引起的簇射 起始点的最可几值;正态分布曲线也就反映了 r 线质化自由程的分布。由实验曲线与正 态分布曲线的比较可以看出, t = 4 c. u.可作为区分 r 线与强子的选择标准。t < 4 c. u. 的定为 r 线; t > 4 c. u. 的定为强子。当然,在定为 r 线的 t < 4 c. u. 的范围内,也有强子 混入;在定为强子的 t > 4 c. u. 的范围内,也有 r 线的混入。在两个区域中两者的混淆, 可从统计上加以确定。上述结果与文献[5,6]相一致。在我们的情况下,强子约占全部事 例的 30%。用这种方法得到的强子在全部观测到的事例中所占的份额,与乳胶室的厚度 密切相关。当室的厚度 ≤ 40 c. u. 时,室越厚得到的结果越接近于大气宇宙线中强子在 r线与强子中实际所占的份额。

四、单个 γ 线的特性

通过事例起始点分布,我们挑选出了 r 线,并且估计出了 r 线与强子这两者间的混 济。为求得 r 线的绝对强度,必须确定室的有效面积。为此,把在离边缘 1 厘米范围内斜 人的事例剔除在统计之外。对这样挑选出的高能 r 线进行了分析,得到的结果如下:

1. 垂直流强 实验得到,在高度为 5500 米的高山上,能量 $E_r \ge 2$ TeV 的高能 r 线的 垂直流强为 $I_{e,r}(E_r \ge 2$ TeV) = (8.09±0.26) × 10⁻¹⁰ cm⁻²sec⁻¹str⁻¹.

2. 能谱 图 3 是我们得到的 5500 米高山上高能 γ 线的积分能谱。 图上的直线表示 该能谱可表成下面的幂函数规律: $N = N_0 E_{\alpha\beta}^{\beta}$, 其中的能谱指数 $\beta = 1.96 \pm 0.07$.

3. 天頂角分布 我们得出的高能 r 线的积分天顶角分布,如图 4 所示. 设 $N_r(\theta)$ 表示 进入室且天顶角大于 θ ,能量 $E_r \ge 2$ TeV 的高能 r 线数,假定在所涉及的 2—50 TeV 能区 里, $N_r(\theta)$ 可表示为 cos θ 的幂函数: $N_r(\theta) \propto \cos^m \theta$. 由图可得,幂指数 $m = 7.3 \pm 0.4$.

4. γ 线在大气中的衰减长度 r线在大气中的衰减长度,与角分布密切相关,其关系式为^[7] $m = \frac{t}{\lambda} + 2$. 其中,m为角分布幂指数,t为大气深度, λ 为r线在大气中的衰减长度. 由此可得 $\lambda = (98 \pm 6)$ 克/[厘米]².

表 1 和图 5 给出了本工作及同类工作的结果。图 5 给出了不同高山高度处 r 线的垂 直流强。图中的直线表示根据这些数据得出的 r 线流强随高度变化的规律。由图可以看 出,我们所得到的 r 线的垂直流强,与流强随高度变化的曲线,是吻合的。

观测点	海拔高度 (米)	大气深度 (克/[厘米] ²)	积分能谱指数 β	积分角分布 指 数 <i>m</i>	衰减 长度 λ (克/[厘米] ²)	参考文献
乘鞍山	2770	735	2.3±0.72	8.6±1.0	101±7	[7]
云南站	3200	700	2.08 ± 0.2 (1< $E_{\tau} \leq 10$ TeV)	9.9	90±16	[4]
富士山	3776	650	1.95+0.2 -0.1	8.0	107	[5]
帕米尔山	4370	596	2.05 ± 0.04 $(2 \le E_r \le 30 \text{TeV})$	8.0±0.6	103±4	[8]
恰卡尔塔亚山	5200	540	2.07 ± 0.16 ($0.2 \le E_r \le 50$ TeV)	8.1 <u>±</u> 0.7	95±10	[2]
甘巴拉山	5500	520	1.96±0.07 (2≤E ₇ ≤50TeV)	7.3±0.4	98±6	本工作

表 1

五、γ 族的某些特征

在由这部分厚室中得到的族中,我们选出满足下面的标准的族进行了初步分析. 事例的选择标准是: 族的总观测能量 $\Sigma E_r \ge 10$ TeV;组成族的簇射斑数 $n_r \ge 4$;族中 γ 线成员的能量 $E_r \ge 2$ TeV. 分析得到的初步结果如下:

1. 族中 \gamma 线的积分能谱 图 6 是我们得到的族中 \gamma 线的积分能谱。这个能谱可用幂 函数表示: N \propto (E_r)^{-\beta}. 实验得出的能谱指数 \beta = 1.23 \pm 0.14. 这个结果和工作 [9] 是

一致的。在接近阈能 2 TeV 的区域,实验点低于图中的直线,估计是由扫描损失造成的。

2. 分数能谱 在一个总观测能量为 ΣE_r 的族中,设第 $i \uparrow r$ 线的能量为 E_i . 将每个族中的 r 线,按其能量由大至小顺序排列,依序逐一求出分数能量 $f_i = E_i / \sum_{j}^{i} E_j$,直到求得的 f 大于最小值 $f_m = 0.04$ 为止。 满足这一条件的 r 线数设为 n',这 $n' \uparrow r$ 线的能量之和设为 $\Sigma' E_r$,则第 $i \uparrow r$ 线的分数能量 $f'_i = E_i / \Sigma' E_r$.

图 7 是我们得到的 f' 谱。 图上的纵坐标是归一化为一个族的 f' \ge 0.04 的 r 线数。 图中的曲线表示按照标度性规律作的 Monte-Carlo 模拟的结果,相应的能区为 80 < $\Sigma' E$ < 250 TeV. 我们的实验结果所涉及的能区为 10 < ΣE < 445 TeV. 由图可见,在低能区中,我们的实验结果在趋势上与标度性规律是不矛盾的^[10].

3. 横动量分布 在我们选择的族中,簇射斑的分布范围较小,图 8 是族中簇射斑至能

量中心距离 R 的分布。因此,可以假定形成族的主相互作用发生在低空。对每个事例都用 x⁰ 介子耦合的方法^[3]求出相互作用的产生高度,所得到的结果均在 900 米以下。求出族中诸 r 线的横动量,作出相应的分布,如图 9 所示。 横动量的平均值为 <pr> meV/c,与一般的结果相比较,这一数值偏高。其原因,估计是由于定高度时有二次作用 混入,使定出的高度降低所致。

该项工作得到了中国科学院高能物理研究所张文裕先生、何泽慧先生、力一先生和霍 安祥同志的热情关怀和支持,作者在此向他们表示衷心的感谢.

参考文献

- [1] Brasil Group and Japan Group, 15th ICRC, Vol. 7(1977), 208.
- [2] C. M. G. Lattes and M. Akashi et al., Suppl. Prog. Theor. Phys., 47(1971), 1.
- 【3] 任敬儒、何 瑁、陈允鸿等, 16th ICRC, Vol. 7(1979), 273.
- [4] 任敬儒等,高能物理与核物理,2(1978),318.
- [5] M. Akashi et al., 16th ICRC, Vol. 7(1979), 68.
- [6] S. G. Bayburine et al., 16th ICRC, Vol. 7(1979), 74.
- [7] M. Akashi et al., Suppl. Prog. Theor. Phys., 32(1964), 1.
- [8] Н. А. Добротин и др. изв, А. Н. СССР Сер. физ., 401 (1976), 901.
- [9] M. Akashi et al., 14th ICRC, (1975), 4306.
- [10] M. Akashi et al., CRL-Report, 54-77-13.

CHARACTERISTICS OF HIGH ENERGY γ-RAYS AT 5500m ALTITUDE

REN JING-RU LU SUI-LING SU SHI

WANG YUN-XIN WANG DIAN-CHEN

(Institute of High Energy Physics, Academia Sinica)

WANG CHENG-RUI HE MAO ZHANG NAI-JIAN CAO PEI-YUAN

LI JIN-YU

(Shandong University)

CHEN YUN-HONG WANG SHI-ZHI

(Zhengzhou University)

ABSTRACT

The characteristics of high energy γ -rays are studued using emulsion chamber installed at Mt. Ganbala, Tibet, 5500 m high above the sea level, at atmospheric depth of 520 g/cm³. The vertical flux, integral energy spectrum, zenith-angle distribution and the attenuation length in the atmosphere for the high energy γ -rays are obtained. The comparsion of the results with those of the similar works shows satisfactory agreement. Several γ -ray families are selected and analyzed and the energy spectrum, fractional energy spectrum and the mean values of the transverse momentum of γ -rays in the families are obtained and discussed.