秩 2 紧致单纯李群的不可约表示(I)

孙 洪 洲 (北京大学物理系)

摘 要

本文分析了 SU_3 群无穷小算子的对易关系,发现 SU_3 群的 8 个无穷小算子可以按其在 SU_2 子群下的变换性质表示为:一个标量算符 A,一组角动量算符 L_1 , L_0 , L_{-1} 及两组秩为 1/2 的不可约张量算符 $T_{\pm 1/2}$, $V_{\pm 1/2}$. 利用 SU_3 群无穷小算子的这个性质,可以容易地求出 SU_3 群的所有有限维不可约表示, SU_3 群的约化系数等等.

本文给出了在 SU_3 群的不可约表示 $(\lambda\mu)$ 中所有的无穷小算子对应的矩阵,从而完全确定了不可约表示 $(\lambda\mu)$ 及其表示空间 $R^{(\lambda\mu)}$ 。 我们还给出了 SU_3 群约化系数标量因子所满足的方程组和对称关系并给出了 $(\lambda\mu)\otimes(10)$, $(\lambda\mu)\otimes(01)$, $(\lambda\mu)\otimes(20)$, $(\lambda\mu)\otimes(11)$ 约化系数标量因子的代数表达式。

在本文最后,我们定义了SU,群的不可约张量算符并证明了相应的Wigner-Eckart 定理。

本文中所用的方法完全可以推广到其他紧致单纯李群中去,在相继的两篇 文章中我们用类似的方法讨论了 C_2 , B_2 , G_2 群的不可约表示。

一、引言

我们知道存在着四种秩 2 紧致单纯李群^[1-3] 即 3 维特殊么正群 $SU_3(A_2)$, 5 维旋转群 $R_3(B_2)$, 2 维辛群 $SP_2(C_2)$, 以及例外群 G_2 . 近年来发现相当广泛的物理问题与秩 2 紧致单纯李群有密切的联系。例如,在核结构方面 SU_3 群与原子核的集体转动有关^[4,7], G_2 群与原子核的四极表面振动有关^[4,7],而 B_2 群与原子核内核子的对相互作用有关^[6,9]。

在这些秩 2 李群中,讨论得最多的是 SU,群。对于 SU,群已经解决了许多问题,如 SU,群的不可约表示,直乘的分解,约化系数^[12,13,15]。但是所用的方法只适用于 SU,群,不能推广到其他李群。此外 SU,群的约化系数,虽有一些数值表^[14,16],及一般表达式^[13,15],但简明的代数表达式还没有给出。

至于 SU_n 群的不可约表示,约化系数等问题也有许多人进行过讨论[15,17,18]。

我们知道,李群的理论是很完整的,对于单纯李群,我们可划出它的根图,权图^[1-3].根据这些性质,应该可以解决求李群的不可约表示,直乘分解,约化系数等问题。但是,实际

本文 1978年12月8日收到。

上在解决问题时,这样作下去是有困难的,这困难在于[3,17]。

- 1. 除了最高权以外,其他的权一般讲都是多重的,这样如何来标记属于这个权的本征 矢量? Racah^[1,3] 指出,需要引人 (N-3l)/2 (N,l) 分别是单纯李群的阶与秩) 个附加算符,但是如何选取还没有解决。
- 2. 李群除了秩 1 李群外,都不是简单可约的,即两个不可约表示的直乘所包含的不可约表示的次数大于 1. 这样就产生了在求直乘分解时如何标记这样的不可约表示的问题。

我们从分析秩 2 单纯李群的根图出发,对秩 2 单纯李群解决了以上两个问题,而且这个方法是可以推广到秩大于 2 的李群中去的.

我们所用的方法与前面所述的一些作者所用的方法比较起来是简单的,而且不需要有对称群U群表示论的基本知识。 此外,我们给出的 SU,群不可约表示的表达式也比较简单,而且给出了一些常用的约化系数的简明的代数表达式。

在以下的两篇文章中,用同样的方法解决了 C_2 , B_1 G_2 群的问题。

用这个方法还可以求得秩 2 单纯李群的一些无穷维表示。

用这个方法也可以求阶化李代数的不可约表示。

1. SU, 群的无穷小算子

 SU_3 群的根图由图 1 给出[1-3],我们把 SU_3 群的 8 个无穷小算子取为

$$A \equiv X_{1} = 3H_{1};$$

$$L_{1} \equiv X_{2} = -\sqrt{3} E_{3}, \quad L_{0} \equiv X_{3} = \sqrt{3} H_{2}, \quad L_{-1} \equiv X_{4} = \sqrt{3} E_{-3};$$

$$T_{\frac{1}{2}} \equiv X_{5} = \sqrt{3} E_{2}, \quad T_{-\frac{1}{2}} \equiv X_{6} = \sqrt{3} E_{1};$$

$$V_{\frac{1}{2}} \equiv X_{7} = \sqrt{3} E_{-1}, \quad V_{-\frac{1}{2}} \equiv X_{8} = -\sqrt{3} E_{-2}.$$
(2.1-1)

 $r^{(-1)}$ $r^{(2)}$ $r^{(-2)}$

a SU, 群的根图(黑线为素根)

 $N_{31} = \sqrt{}$

 $[A, L_s] = 0,$ $[L_0, L_{\pm 1}] = \pm L_{\pm 1},$ $[L_1, L_{-1}] = -L_0;$ $[A, T_q] = \frac{3}{2} T_q,$ $[L_0, T_q] = qT_q,$

它们满足以下的对易关系

b SU, 群的邓金图

$$[L_{\pm 1}, T_q] = \mp \left\{ \frac{1}{2} \left(\frac{1}{2} \mp q \right) \left(\frac{1}{2} \pm q + 1 \right) \right\}^{\frac{1}{4}} T_{q\pm 1};$$

$$[A, V_q] = -\frac{3}{2} V_q,$$

$$[L_0, V_q] = q V_q,$$

$$[L_{\pm 1}, V_q] = \mp \frac{1}{2} \left\{ \left(\frac{1}{2} \mp q \right) \left(\frac{1}{2} \pm q + 1 \right) \right\}^{\frac{1}{2}} V_{q\pm 1};$$

$$[T_q, T_{q'}] = 0,$$

$$[V_q, V_{q'}] = 0.$$
(2.1-2)

从(2.1-2)可以看出: L_0 , $L_{\pm 1}$ 构成一组角动量,A是个标量,而 $T_{\pm \frac{1}{2}}$, $V_{\pm \frac{1}{2}}$ 各构成一组秩为 1/2 的不可约张量。具体计算可得

$$(VT)_{s}^{1} - (TV)_{s}^{1} = \sqrt{\frac{1}{2}} L_{s},$$

$$(VT)_{0}^{0} + (TV)_{0}^{0} = -\sqrt{\frac{1}{2}} A.$$
(2.1-3)

其中

$$(VT)_{s}^{\xi} = \sum_{qq'} \left\langle \frac{1}{2} q \frac{1}{2} q' \middle| \xi s \right\rangle V_{q} T_{q'},$$

$$(TV)_{s}^{\xi} = \sum_{qq'} \left\langle \frac{1}{2} q \frac{1}{2} q' \middle| \xi s \right\rangle T_{q} V_{q'},$$

$$(2.1-3')$$

系数 $\left\langle \frac{1}{2} q \frac{1}{2} q' \middle| \xi s \right\rangle$ 是 C. G. 系数。

由(2.1-1)还可以得到

$$T_{q} = (-)^{\frac{1}{2}+q} (V_{-q})^{+}. \tag{2.1-4}$$

SU、群的 Casimir 算子可以写为

$$C = \frac{1}{3} \left\{ L^2 + \frac{1}{3} A(A+3) + 2\sqrt{2} (VT)_0^0 \right\}. \tag{2.1-5}$$

2. SU, 群的不可约表示

为了完全标记 SU_3 群的不可约表示 $(\lambda \mu)$ 的基矢,除了算符 $A = 3H_1$ 和 $L_0 = \sqrt{3}H_2$ 以外,需要 $f = \frac{1}{2}(8-3\times2) = 1$ 个外加算符 (3-3),我们选这个外加算符为

$$L^2 = -L_1L_{-1} - L_{-1}L_1 + L_{0}^2$$

即我们选 A, L^2, L_0 的共同本征函数

$$\left| { \begin{pmatrix} \lambda \mu \end{pmatrix} \atop \kappa \Lambda K} \right\rangle$$

为 SU_3 群不可约表示($\lambda\mu$)的表示空间 $R^{(\lambda\mu)}$ 的基矢。

$$A\left|\frac{(\lambda\mu)}{\varepsilon\Lambda K}\right\rangle = \varepsilon\left|\frac{(\lambda\mu)}{\varepsilon\Lambda K}\right\rangle,$$

$$L^{2} \begin{vmatrix} (\lambda \mu) \\ \epsilon \Lambda K \end{vmatrix} = \Lambda (\Lambda + 1) \begin{vmatrix} (\lambda \mu) \\ \epsilon \Lambda K \end{vmatrix},$$

$$L_{0} \begin{vmatrix} (\lambda \mu) \\ \epsilon \Lambda K \end{vmatrix} = K \begin{vmatrix} (\lambda \mu) \\ \epsilon \Lambda K \end{vmatrix}. \tag{2.2-1}$$

这时对应于无穷小算子 A, L_0 , $L_{\pm 1}$, $T_{\pm \frac{1}{2}}$, $V_{\pm \frac{1}{2}}$ 的矩阵为:

$$\left\langle \begin{array}{c} (\lambda\mu) \\ e'\Lambda'K' \end{array} \middle| A \middle| \begin{array}{c} (\lambda\mu) \\ e\Lambda K \end{array} \right\rangle = e\delta(e'e)\delta(\Lambda'\Lambda)\delta(K'K),$$

$$\left\langle \begin{array}{c} (\lambda\mu) \\ e'\Lambda'K' \end{array} \middle| L_0 \middle| \begin{array}{c} (\lambda\mu) \\ e\Lambda K \end{array} \right\rangle = K\delta(e'e)\delta(\Lambda'\Lambda)\delta(K'K),$$

$$\left\langle \begin{array}{c} (\lambda\mu) \\ e'\Lambda'K' \end{array} \middle| L_{\pm 1} \middle| \begin{array}{c} (\lambda\mu) \\ e\Lambda K \end{array} \right\rangle = \mp \left\{ \frac{1}{2} (\Lambda \mp K)(\Lambda \pm K + 1) \right\}^{\frac{1}{2}}.$$

$$\delta(e', e)\delta(\Lambda', \Lambda)\delta(K', K \pm 1),$$

$$\left\langle \begin{array}{c} (\lambda\mu) \\ e'\Lambda'K' \end{array} \middle| T_{\pm \frac{1}{2}} \middle| \begin{array}{c} (\lambda\mu) \\ e\Lambda K \end{array} \right\rangle = \left\langle \begin{array}{c} (\lambda\mu) \\ e + \frac{3}{2}\Lambda' \end{array} \middle| \|T\| \\ e\Lambda \end{array} \right\rangle.$$

$$\left\langle \begin{array}{c} (\lambda\mu) \\ \sqrt{(2\Lambda' + 1)} \end{array} \right\rangle \delta\left(e', e + \frac{3}{2}\right),$$

$$\left\langle \begin{array}{c} (\lambda\mu) \\ e'\Lambda'K' \end{array} \middle| V_{\pm \frac{1}{2}} \middle| \begin{array}{c} (\lambda\mu) \\ e\Lambda K \end{array} \right\rangle = \left\langle \begin{array}{c} (\lambda\mu) \\ e - \frac{3}{2}\Lambda' \end{array} \middle| \|V\| \begin{array}{c} (\lambda\mu) \\ e\Lambda \end{array} \right\rangle.$$

$$\left\langle \begin{array}{c} (\lambda\mu) \\ e'\Lambda'K' \end{array} \middle| V_{\pm \frac{1}{2}} \middle| \begin{array}{c} (\lambda\mu) \\ e\Lambda K \end{array} \right\rangle = \left\langle \begin{array}{c} (\lambda\mu) \\ e - \frac{3}{2}\Lambda' \end{array} \middle| \|V\| \begin{array}{c} (\lambda\mu) \\ e\Lambda \end{array} \right\rangle.$$

$$\left\langle \begin{array}{c} (\lambda\mu) \\ e'\Lambda'K' \end{array} \middle| V_{\pm \frac{1}{2}} \middle| \begin{array}{c} (\lambda\mu) \\ e\Lambda K \end{array} \right\rangle = \left\langle \begin{array}{c} (\lambda\mu) \\ e - \frac{3}{2}\Lambda' \end{array} \middle| V \right\rangle \left\langle \begin{array}{c} (\lambda\mu) \\ e\Lambda \end{array} \right\rangle.$$

$$\left\langle \begin{array}{c} (\lambda K \frac{1}{2} \pm \frac{1}{2} \middle| \Lambda'K' \right\rangle \\ \sqrt{(2\Lambda' + 1)} \end{array} \right\rangle \delta\left(e', e - \frac{3}{2}\right).$$

$$\left\langle \begin{array}{c} (\lambda K \frac{1}{2} \pm \frac{1}{2} \middle| \Lambda'K' \right\rangle \\ \sqrt{(2\Lambda' + 1)} \end{array} \right\rangle \delta\left(e', e - \frac{3}{2}\right).$$

$$\left\langle \begin{array}{c} (\lambda K \frac{1}{2} \pm \frac{1}{2} \middle| \Lambda'K' \right\rangle \\ \sqrt{(2\Lambda' + 1)} \end{array} \right\rangle \delta\left(e', e - \frac{3}{2}\right).$$

$$\left\langle \begin{array}{c} (\lambda K \frac{1}{2} \pm \frac{1}{2} \middle| \Lambda'K' \right\rangle \\ \sqrt{(2\Lambda' + 1)} \end{array} \right\rangle \delta\left(e', e - \frac{3}{2}\right).$$

由(2.1-4)可得

$$\left\langle \frac{(\lambda \mu)}{\epsilon + \frac{3}{2} \Lambda'} \| T \| \frac{(\lambda \mu)}{\epsilon \Lambda} \right\rangle = (-)^{\Lambda' + \frac{1}{2} - \Lambda} \left\langle \frac{(\lambda \mu)}{\epsilon \Lambda} \| V \| \frac{(\lambda \mu)}{\epsilon + \frac{3}{2} \Lambda'} \right\rangle. \tag{2.2-3}$$

由(2.1-3)可以得到

$$D_{\epsilon}(\Lambda'\Lambda', \Lambda\tilde{\Lambda}) = F_{0}\delta(\Lambda, \tilde{\Lambda}) + F_{1}D_{\epsilon+\frac{3}{2}}\left(\Lambda\tilde{\Lambda}, \Lambda - \frac{1}{2}\Lambda - \frac{1}{2}\right) + F_{2}D_{\epsilon+\frac{3}{2}}\left(\Lambda\tilde{\Lambda}, \Lambda + \frac{1}{2}\Lambda + \frac{1}{2}\right), \qquad (2.2-4)$$

其中

$$D_{\epsilon}(\Lambda'\tilde{\Lambda}',\Lambda\tilde{\Lambda}) = \left\langle \begin{array}{c} (\lambda\mu) \\ \epsilon - \frac{3}{2} \Lambda' \end{array} \| V \| \begin{array}{c} (\lambda\mu) \\ \epsilon \Lambda \end{array} \right\rangle \left\langle \begin{array}{c} (\lambda\mu) \\ \epsilon - \frac{3}{2} \tilde{\Lambda}' \end{array} \| V \| \begin{array}{c} (\lambda\mu) \\ \epsilon \tilde{\Lambda} \end{array} \right\rangle. \quad (2.2-4')$$

系数 F_0 , F_1 , F_2 由表 1 给出

 SU_3 群不可约表示 $(\lambda\mu)$ 的表示空间 $R^{(\lambda\mu)}$ 的基矢之间有以下关系

Λ' Λ Ã	F ₀	F_1	F_t
$\Lambda - \frac{1}{2}$ Λ Λ	$\Lambda(e + \Lambda + 1)$	$-\frac{1}{2A+1}$	$\frac{2A}{2A+1}$
$\Lambda + \frac{1}{2} \Lambda \Lambda \Lambda$	$(\Lambda + 1)(\sigma - \Lambda)$	$\frac{2\Lambda+2}{2\Lambda+1}$	$\frac{1}{2A+1}$
$\Lambda + \frac{1}{2} \Lambda \Lambda + 1$			1

表 1 系数 F₀, F₁, F₂

$$\sqrt{(2\Lambda'+1)} \left\{ V \left| \begin{pmatrix} (\lambda\mu) \\ {}_{e\Lambda} \end{pmatrix} \right\}_{A'K'} = \left\langle \begin{pmatrix} (\lambda\mu) \\ {}_{e} - \frac{3}{2} \Lambda' \|V\| \end{pmatrix}_{e\Lambda} \left\langle \begin{pmatrix} (\lambda\mu) \\ {}_{e} - \frac{3}{2} \Lambda'K' \end{pmatrix} \right\rangle, \quad (2.2-5)$$

其中

$$\left\{V\left|\binom{(\lambda\mu)}{g\Lambda}\right\rangle\right\}_{A'K'} = \sum_{qK} \left\langle \Lambda K \frac{1}{2} q \left| \Lambda' K' \right\rangle V_q \left|\binom{(\lambda\mu)}{g\Lambda K}\right\rangle. \tag{2.2-5'}$$

由[3]知 SU,群的不可约表示 $(\lambda\mu)$ 的最高权 W 满足以下两条件

$$\frac{2\mathbf{W} \cdot \mathbf{r}(1)}{|\mathbf{r}(1)|^2} = \lambda,$$

$$\frac{2\mathbf{W} \cdot \mathbf{r}(3)}{|\mathbf{r}(3)|^2} = \mu.$$
(2.2-6)

r(1), r(3) 是 SU, 群的素根,这对应于

$$e_{\text{max}} = \frac{1}{2} (2\lambda + \mu), \quad \Lambda_0 = \frac{\mu}{2}$$
 (2.2-6')

其中 e_{max} 是 SU_3 群不可约表示 $(\lambda\mu)$ 的表示空间 $R^{(\lambda\mu)}$ 中 e 的最大可取值, 而 Λ_0 是当 e 取 e_{max} 时 Λ 所取的值. 把 (2.2-6) 代入 (2.2-4) 经反复运算可得

$$\left\langle \frac{(\lambda \mu)}{e - \frac{3}{2} \Lambda + \frac{1}{2}} \| V \| \frac{(\lambda \mu)}{e \Lambda} \right\rangle = \left\{ \frac{1}{2} (a + 2)(a + 1 - \mu)(\lambda + \mu - a) \right\}^{\frac{1}{2}},$$

$$\left\langle \frac{(\lambda \mu)}{e - \frac{3}{2} \Lambda - \frac{1}{2}} \| V \| \frac{(\lambda \mu)}{e \Lambda} \right\rangle = -\left\{ \frac{1}{2} (b + 1)(\mu - b)(\lambda + \mu + 1 - b) \right\}^{\frac{1}{2}}, (2.2-7)$$

其中

$$\varepsilon = (\lambda + 2\mu) - \frac{3}{2}(a+b),$$

$$\Lambda = \frac{1}{2}(a-b);$$
(2.2-7')

在 (2.2-7) 中 a, b 的可取值为

$$a = \mu, \ \mu + 1, \cdots \mu + \lambda,$$

 $b = 0, 1, \cdots \mu.$ (2.2-7")

利用 (2.2-7") 可以得到 SU, 群的不可约表示(λμ)的维数

$$d^{(\lambda\mu)} = (\lambda + 1)(\mu + 1)\left(1 + \frac{\lambda + \mu}{2}\right). \tag{2.2-8}$$

在不可约表示 $(\lambda\mu)$ 中, SU_3 群的 Casimir 算子所对应的矩阵为

$$\left\langle \frac{(\lambda\mu)}{e'\Lambda'K'} \middle| C \middle| \frac{(\lambda\mu)}{e\Lambda K} \right\rangle = \frac{1}{9} \left\{ (\lambda+3)(\lambda+\mu) + \mu^2 \right\} \delta(e',e) \delta(\Lambda',\Lambda) \delta(K',K). \quad (2.2-9)$$

这样,我们就求得了 SU_3 群的不可约表示($\lambda\mu$).

3. SU3 群的约化系数

(a) SU₃ 群的约化系数及其对称关系

设 SU_3 群的两个不可约表示($\lambda_1\mu_1$),($\lambda_2\mu_2$)的表示空间是 $R^{(\lambda_1\mu_1)}$, $R^{(\lambda_2\mu_2)}$ 。 它们的基矢分别是 $\begin{vmatrix} (\lambda_1\mu_1) \\ \epsilon_1\Lambda_1K_1 \end{vmatrix}$, $\begin{vmatrix} (\lambda_2\mu_2) \\ \epsilon_2\Lambda_2K_2 \end{vmatrix}$ 。 为了书写方便,我们分别用 Γ_1 , Γ_2 标记($\lambda_1\mu_1$),($\lambda_2\mu_2$);而用 γ_1 , γ_2 标记 $\epsilon_1\Lambda_1K_1$, $\epsilon_2\Lambda_2K_2$ 。

一般讲, R^{r_1} , R^{r_2} 的直乘空间 $R^{r_1} \otimes R^{r_2}$ 并不是 SU_3 群的一个不可约表示的表示空间。但是 $R^{r_1} \otimes R^{r_2}$ 可以分解为 SU_3 群的一些不可约表示 Γ 的表示空间 R^{r} 的直和,而 R^{r} 的基矢可以写为

$$\left| \begin{array}{c} {}^{n} \Gamma \\ {}_{\gamma} \end{array} \right\rangle = \sum_{r_1 r_2} \left\langle \begin{array}{cc} \Gamma_1 & \Gamma_2 \\ {}_{\gamma_1} & \gamma_2 \end{array} \right| \left. \begin{array}{c} {}^{n} \cdot \Gamma \\ {}_{\gamma} \end{array} \right\rangle \left| \begin{array}{c} \Gamma_1 \\ {}_{\gamma_2} \end{array} \right\rangle. \tag{2.3-1}$$

组合系数 $\left\langle \begin{array}{cc} \Gamma_1 & \Gamma_2 \\ \gamma_1 & \gamma_2 \end{array} \right| \left\langle \begin{array}{cc} n & \Gamma \\ \gamma & \gamma \end{array} \right\rangle$ 称为 SU, 群的约化系数,量子数 n 是流动指标。

由于 Γ 是SU。群的不可约表示,所以约化系数满足以下方程

$$\sum_{\mathbf{r'}} \left\langle \frac{\Gamma_{1}}{\gamma_{1}} \frac{\Gamma_{2}}{\gamma_{2}} \right| \frac{n}{\gamma'} \right\rangle \left\langle \frac{\Gamma}{\gamma'} \left| X_{i} \right| \frac{\Gamma}{\gamma} \right\rangle
= \sum_{\mathbf{r'}_{1}} \left\langle \frac{\Gamma_{1}}{\gamma_{1}} \left| X_{1i} \right| \frac{\Gamma_{1}}{\gamma'_{1}} \right\rangle \left\langle \frac{\Gamma_{1}}{\gamma'_{1}} \frac{\Gamma_{2}}{\gamma_{2}} \right| \frac{n}{\gamma} \frac{\Gamma}{\gamma} \right\rangle
+ \sum_{\mathbf{r'}_{2}} \left\langle \frac{\Gamma_{2}}{\gamma_{2}} \left| X_{2i} \right| \frac{\Gamma_{2}}{\gamma'_{2}} \right\rangle \left\langle \frac{\Gamma_{1}}{\gamma_{1}} \frac{\Gamma_{2}}{\gamma'_{2}} \right| \frac{n}{\gamma} \frac{\Gamma}{\gamma} \right\rangle, \qquad (2.3-2)$$

$$\mathbf{i} = 1, 2, 3 \cdots 8.$$

我们规定相因子,使得约化系数为实数并且

$$\left\langle \frac{\Gamma_1}{\hat{\gamma}_1} \frac{\Gamma_2}{\tilde{\gamma}_2} \middle| \frac{n \Gamma}{\hat{\gamma}} \right\rangle > 0.$$
 (2.3-3)

其中 \hat{r} 表示对应于最高权态的一组 $\epsilon\Lambda K$ 值,而 \hat{r} 表示 ϵK 确定时 Λ 取最大可取值时的一组 $\epsilon\Lambda K$ 值。

这样,约化系数满足的正交归一条件可以写为

$$\sum_{r_1r_2} \left\langle \begin{matrix} \Gamma_1 & \Gamma_2 \\ \gamma_1 & \gamma_2 \end{matrix} \middle| \begin{matrix} n & \Gamma \\ \gamma \end{matrix} \right\rangle \left\langle \begin{matrix} \Gamma_1 & \Gamma_2 \\ \gamma_1 & \gamma_2 \end{matrix} \middle| \begin{matrix} n'\Gamma' \\ \gamma' \end{matrix} \right\rangle = \delta(n, n')\delta(\Gamma, \Gamma'), \, \delta(\gamma, \gamma').$$

$$\sum_{r_1r_2} \left\langle \begin{matrix} \Gamma_1 & \Gamma_2 \\ \gamma_1 & \gamma_2 \end{matrix} \middle| \begin{matrix} n & \Gamma \\ \gamma \end{matrix} \middle| \begin{matrix} \Gamma_1 & \Gamma_2 \\ \gamma'_1 & \gamma'_2 \end{matrix} \middle| \begin{matrix} n & \Gamma \\ \gamma'_2 & \gamma'_2 \end{matrix} \right\rangle = \delta(\gamma_1, \gamma_1')\delta(\gamma_2, \gamma_2'). \quad (2.3-4)$$

从原则上讲,解 (2.3-2), (2.3-3) 即可得到 SU_3 群的约化系数 $\begin{pmatrix} \Gamma_1 & \Gamma_2 & r & \Gamma_2 \\ \gamma_1 & \gamma_2 & \gamma \end{pmatrix}$ 。 若 (2.3-2) 仅仅有一组非 0 解,则说明 $R^{\Gamma_1} \otimes R^{\Gamma_2}$ 仅包含 R^{Γ} 一次,若 (2.3-2) 有 f 组非 0 独立解,则表明 $R^{\Gamma_1} \otimes R^{\Gamma_2}$ 包含 R^{Γ} f 次。

从(2.3-2)我们可以看出 SU, 群的约化系数满足以下的对称关系

$$\left\langle \begin{array}{ccc} \Gamma_{2} & \Gamma_{1} \\ \gamma_{2} & \gamma_{1} \end{array} \right| \left\langle \begin{array}{ccc} n \Gamma_{3} \\ \gamma_{3} \end{array} \right\rangle = \sum_{n'} A_{n'} \left\langle \begin{array}{ccc} \Gamma_{1} & \Gamma_{2} \\ \gamma_{1} & \gamma_{2} \end{array} \right| \left\langle \begin{array}{ccc} \dot{\Gamma}_{1} & \dot{\Gamma}_{2} \\ \dot{\gamma}_{1} & \dot{\gamma}_{2} \end{array} \right| \left\langle \begin{array}{ccc} \dot{\Gamma}_{1} & \dot{\Gamma}_{2} \\ \dot{\gamma}_{1} & \dot{\gamma}_{2} \end{array} \right| \left\langle \begin{array}{ccc} \dot{\Gamma}_{1} & \dot{\Gamma}_{2} \\ \dot{\gamma}_{1} & \dot{\gamma}_{2} \end{array} \right| \left\langle \begin{array}{ccc} \dot{\Gamma}_{1} & \dot{\Gamma}_{2} \\ \gamma_{1} & \gamma_{2} \end{array} \right| \left\langle \begin{array}{ccc} \dot{\Gamma}_{1} & \dot{\Gamma}_{2} \\ \gamma_{1} & \gamma_{2} \end{array} \right| \left\langle \begin{array}{ccc} \dot{\Gamma}_{1} & \dot{\Gamma}_{2} \\ \gamma_{1} & \dot{\gamma}_{2} \end{array} \right\rangle = \sum_{n'} C_{n'} (-)^{\epsilon_{1} + K_{1}} \sqrt{\frac{d^{(\Gamma_{2})}}{d^{(\Gamma_{3})}}} \left\langle \begin{array}{ccc} \Gamma_{1} & \Gamma_{2} \\ \gamma_{1} & \gamma_{2} \end{array} \right| \left\langle \begin{array}{ccc} n' \Gamma_{3} \\ \gamma_{1} & \gamma_{2} \end{array} \right\rangle. \tag{2.3-5}$$

其中 $d^{(\Gamma)}$ 标记不可约表示 Γ 的维数, $\dot{\Gamma}$ 是不可约表示 Γ 的共轭表示 (即 $\Gamma = (\lambda \mu)$), $\dot{\Gamma} = (\mu \lambda)$), $\dot{\gamma}$ 标记 $-\epsilon \Lambda - K$,而实数 $A_n B_n C_n$,满足

$$\sum_{n} A_{n'}^{2} = \sum_{n'} B_{n'}^{2} = \sum_{n'} C_{n'} = 1.$$
 (2.3-5')

(b)约化系数标量因子及其对称关系

从(2.3-2)及(2.3-3)可以看出

$$\left\langle \begin{array}{cc} \Gamma_1 & \Gamma_2 \\ \gamma_1 & \gamma_2 \end{array} \right| \left. \begin{array}{cc} {}^{n}\Gamma_3 \\ \gamma_3 \end{array} \right\rangle = \left\langle \begin{array}{cc} \Gamma_1 & \Gamma_2 \\ {}^{e_1}\Lambda_1 & {}^{e_2}\Lambda_2 \end{array} \right| \left. \begin{array}{cc} {}^{n}\Gamma_3 \\ {}^{e_3}\Lambda_3 \end{array} \right\rangle \left\langle \Lambda_1 K_1 \Lambda_2 K_2 \right| \Lambda_3 K_3 \right\rangle,$$
 (2.3-6)

其中 $\langle \Lambda_1 K_1 \Lambda_2 K_2 | \Lambda_3 K_3 \rangle$ 是 C-G. 系数,系数 $\langle \begin{array}{cc} \Gamma_1 & \Gamma_2 \\ \epsilon_1 \Lambda_1 & \epsilon_2 \Lambda_2 \end{array} \rangle$ 称为约化系数标量因子。

把(2.3-6)代人(2.3-2)可以得到约化系数标量因子所满足的方程组

其中

$$\left\langle \frac{\Gamma_{1}}{\epsilon_{1}\Lambda_{1}} \frac{\Gamma_{2}}{\epsilon_{2}\Lambda_{2}} \Lambda \| V_{1} + V_{2} \| \frac{\Gamma_{1}}{\epsilon'_{1}\Lambda'_{1}} \frac{\Gamma_{2}}{\epsilon'_{2}\Lambda'_{2}} \Lambda' \right\rangle$$

$$= f(\Lambda_{1}\Lambda_{2}\Lambda, \Lambda'_{1}\Lambda'_{2}\Lambda') \left\langle \frac{\Gamma_{1}}{\epsilon_{1}\Lambda_{1}} \| V_{1} \| \frac{\Gamma_{1}}{\epsilon'_{1}\Lambda'_{1}} \right\rangle \delta(\epsilon_{2}, \epsilon'_{2})$$

$$+ g(\Lambda_{1}\Lambda_{2}\Lambda, \Lambda'_{1}\Lambda'_{2}\Lambda') \left\langle \frac{\Gamma_{2}}{\epsilon_{2}\Lambda_{2}} \| V_{2} \| \frac{\Gamma_{2}}{\epsilon'_{2}\Lambda'_{2}} \right\rangle \delta(\epsilon_{1}, \epsilon'_{1}), \quad (2.3-7')$$

而

$$f(\Lambda_{1}\Lambda_{2}\Lambda, \Lambda'_{1}\Lambda'_{2}\Lambda') = (-)^{\Lambda_{1}+\Lambda_{2}+\Lambda'+\frac{1}{2}}\sqrt{(2\Lambda'+1)(2\Lambda+1)} \begin{Bmatrix} 1/2 & \Lambda_{1} & \Lambda'_{1} \\ \Lambda_{2} & \Lambda' & \Lambda \end{Bmatrix} \delta(\Lambda_{2}, \Lambda'_{2}),$$

$$g(\Lambda_{1}\Lambda_{2}\Lambda, \Lambda'_{1}\Lambda'_{2}\Lambda') = (-)^{\Lambda_{1}+\Lambda'_{2}+\Lambda+1/2}\sqrt{(2\Lambda'+1)(2\Lambda+1)} \begin{Bmatrix} 1/2 & \Lambda_{2} & \Lambda'_{2} \\ \Lambda_{1} & \Lambda' & \Lambda \end{Bmatrix} \delta(\Lambda_{1}, \Lambda'_{1}),$$

$$(2.3-7'')$$

式中 $\left\{ \dots \right\}$ 是6i系数。

约化系数标量因子的相因子的选择为

$$\left\langle \frac{\Gamma_1 - \Gamma_2}{\hat{e}_1 \Lambda_1 - \hat{e}_2 \tilde{A}_2} \middle| \frac{n - \Gamma}{\hat{e} \Lambda} \right\rangle > 0; \tag{2.3-8}$$

约化系数标量因子的正交归一化条件为

$$\sum_{\epsilon_{1}\Lambda_{1}\epsilon_{2}\Lambda_{2}} \left\langle \frac{\Gamma_{1}}{\epsilon_{1}\Lambda_{1}} \frac{\Gamma_{2}}{\epsilon_{2}\Lambda_{2}} \right| {n \Gamma \choose e \Lambda} \left\langle \frac{\Gamma_{1}}{\epsilon_{1}\Lambda_{1}} \frac{\Gamma_{2}}{\epsilon_{2}\Lambda_{2}} \right| {n'\Gamma' \choose e \Lambda} \right\rangle = \delta(n, n')\delta(\Gamma, \Gamma');$$

$$\sum_{n\Gamma} \left\langle \frac{\Gamma_{1}}{\epsilon_{1}\Lambda_{1}} \frac{\Gamma_{2}}{\epsilon_{2}\Lambda_{2}} \right| {n \Gamma \choose e \Lambda} \left\langle \frac{\Gamma_{1}}{\epsilon_{1}'\Lambda_{1}'} \frac{\Gamma_{2}}{\epsilon_{2}'\Lambda_{2}'} \right| {n \Gamma \choose e \Lambda} \right\rangle = \delta(\epsilon_{1}, \epsilon_{1}')\delta(\Lambda_{1}, \Lambda_{1}')\delta(\epsilon_{2}, \epsilon_{2}') \cdot \delta(\Lambda_{2}, \Lambda_{2}').$$

$$(2.3-9)$$

解(2.3-7)比解(2.3-2)简单得多。解(2.3-7).我们得到了(λ_ιμ_ι)⊗(10)和(λ_ιμ_ι)⊗(01)的 约化系数.所得结果在表 2 中给出。

由 (2.3-5) 可以得到 SU_3 群约化系数标量因子所满足的对称关系

其中

$$\sum_{n'} A_{n'}^2 = \sum_{n'} B_{n'}^2 = \sum_{n'} C_{n'}^2 = 1.$$

当 $R^{r_1} \otimes R^{r_2}$ 仅包含 R^{r_3} 一次时,则 (2.3-10) 变为

$$\left\langle \begin{array}{ccc} \Gamma_{2} & \Gamma_{1} & \Gamma_{3} \\ \epsilon_{2}\Lambda_{2} & \epsilon_{1}\Lambda_{1} & \epsilon_{3}\Lambda_{3} \end{array} \right\rangle = \pm (-)^{\Lambda_{1}+\Lambda_{2}-\Lambda_{3}} \left\langle \begin{array}{ccc} \Gamma_{1} & \Gamma_{2} & \Gamma_{3} \\ \epsilon_{1}\Lambda_{1} & \epsilon_{2}\Lambda_{2} & \epsilon_{3}\Lambda_{3} \end{array} \right\rangle,$$

$$\left\langle \begin{array}{ccc} \dot{\Gamma}_{1} & \dot{\Gamma}_{2} & \dot{\Gamma}_{3} \\ -\epsilon_{1}\Lambda_{1} & -\epsilon_{2}\Lambda_{2} & -\epsilon_{3}\Lambda_{3} \end{array} \right\rangle = \pm (-)^{\Lambda_{1}+\Lambda_{2}-\Lambda_{3}} \left\langle \begin{array}{ccc} \Gamma_{1} & \Gamma_{2} & \Gamma_{3} \\ \epsilon_{1}\Lambda_{1} & \epsilon_{2}\Lambda_{2} & \epsilon_{3}\Lambda_{3} \end{array} \right\rangle,$$

$$\left\langle \begin{array}{ccc} \Gamma_{1} & \dot{\Gamma}_{3} & \dot{\Gamma}_{2} \\ \epsilon_{1}\Lambda_{1} & -\epsilon_{3}\Lambda_{3} & -\epsilon_{3}\Lambda_{2} \end{array} \right\rangle = \pm (-)^{\epsilon_{1}+\Lambda_{1}} \sqrt{\frac{d^{(\Gamma_{2})}(2\Lambda_{3}+1)}{d^{(\Gamma_{3})}(2\Lambda_{2}+1)}} \left\langle \begin{array}{ccc} \Gamma_{1} & \Gamma_{2} & \Gamma_{3} \\ \epsilon_{1}\Lambda_{1} & \epsilon_{2}\Lambda_{2} & \epsilon_{3}\Lambda_{3} \end{array} \right\rangle,$$

$$(2.3-10')$$

其中的正负号不难从(2.3-5)式决定.

(c) 约化系数标量因子中流动指标 n 的确定.通过类似于角动量偶合的计算,可以得到

$$\sum_{n} \langle n'' \Gamma'' n \Gamma | n' \Gamma' \overline{n} \Gamma \rangle \left\langle \frac{\Gamma_{1} - \Gamma''}{\gamma_{1} - \gamma''} \right| \frac{n \Gamma}{\gamma} \rangle$$

$$= \sum_{\tau_{1} \tau_{1} \tau'} \left\langle \frac{\Gamma_{1} - \Gamma_{2}}{\gamma_{1} - \gamma_{2}} \right| \frac{n' \Gamma'}{\gamma'} \right\rangle \left\langle \frac{\Gamma' - \Gamma_{3}}{\gamma' - \gamma_{3}} \right| \frac{\overline{n} \Gamma}{\gamma} \right\rangle \left\langle \frac{\Gamma_{2} - \Gamma_{3}}{\gamma_{2} - \gamma_{3}} \right| \frac{n'' \Gamma''}{\gamma''} \right\rangle. \quad (2.3-11)$$

其中

$$\langle n''\Gamma''n\Gamma | n'\Gamma'\bar{n}\Gamma \rangle \equiv \langle [\Gamma_1(\Gamma_2\Gamma_3)n''\Gamma'']n\Gamma | [(\Gamma_1\Gamma_2)n'\Gamma'\Gamma_3]\bar{n}\Gamma \rangle$$

是 SU3 群的归一化的 Racah 系数。

将(2.3-6)代入(2.3-11)即得

$$\sum_{n} \langle n''\Gamma''n\Gamma|n'\Gamma'\overline{n}\Gamma\rangle \left\langle \frac{\Gamma_{1}}{\epsilon_{1}\Lambda_{1}} \frac{\Gamma''}{\epsilon''\Lambda''} \middle| \frac{n\Gamma}{\epsilon\Lambda} \right\rangle$$

$$= F(\Gamma_{1}\Gamma_{2}\Gamma_{3}\overline{n}\Gamma, n'\Gamma'n''\Gamma''), \qquad (2.3-12)$$

其中

$$F(\Gamma_{1}\Gamma_{2}\Gamma_{3}\overline{n}\Gamma, n'\Gamma'n''\Gamma'') = \sum_{\epsilon_{2}\Lambda_{2}\epsilon_{3}\Lambda_{3}\epsilon'\Lambda'} (-)^{\Lambda_{1}+\Lambda_{2}+\Lambda_{3}+\Lambda}$$

$$\sqrt{(2\Lambda'+1)(2\Lambda''+1)} \begin{Bmatrix} \Lambda_{1} & \Lambda_{2} & \Lambda' \\ \Lambda_{3} & \Lambda & \Lambda'' \end{Bmatrix} \begin{pmatrix} \Gamma_{1} & \Gamma_{2} & n'\Gamma' \\ \epsilon_{1}\Lambda_{1} & \epsilon_{2}\Lambda_{2} & \epsilon'\Lambda' \end{pmatrix}$$

$$\times \begin{pmatrix} \Gamma' & \Gamma_{3} & \overline{n}\Gamma \\ \epsilon'\Lambda' & \epsilon_{3}\Lambda_{1} & \epsilon_{4}\Lambda \end{pmatrix} \begin{pmatrix} \Gamma_{2} & \Gamma_{3} & n''\Gamma'' \\ \epsilon_{3}\Lambda_{1} & \epsilon_{3}\Lambda_{3} & \epsilon''\Lambda'' \end{pmatrix}. \qquad (2.3-12')$$

由于 $R^{(\lambda_1\mu_1)}\otimes R^{(\lambda_20)}$ 包含 $R^{(1\mu)}$ 仅一次,于是将 $\Gamma_1=(\lambda_1\mu_1)$, $\Gamma_2=(\lambda_2\,0)$, $\Gamma_3=(1\,0)$, $\Gamma''=(\lambda_2+1\,0)$, $\Gamma'=(\lambda'\mu')$ 代人(2.3-12)得

$$\langle (\lambda_2+1\ 0)(\lambda\mu)|(\lambda'\mu')(\lambda\mu)\rangle \langle (\lambda_1\mu_1) \quad (\lambda_2+1\ 0) \quad (\lambda\mu) \rangle \langle (\lambda_1\mu_1) \quad (\lambda_2+1\ 0) \quad (\lambda\mu) \rangle$$

$$= F((\lambda_1 \ \mu_1)(\lambda_2 \ 0)(1 \ 0)(\lambda \mu), (\lambda' \mu')(\lambda_2 + 1 \ 0)). \tag{2.3-13}$$

公式(2.3-13) 可以看作是 SU_3 群 $R^{(\lambda_1,\mu_1)}\otimes R^{(\lambda_2,0)}$ 约化系数标量因子间的一个递推公式,而 $\langle (\lambda_2+1\ 0)(\lambda\mu)|(\lambda'\mu')(\lambda\mu)\rangle$ 可以看作是一个归一化常数。 利用 (2.3-13) 我们求出了 SU_3 群 $R^{(\lambda_1,\mu_1)}\otimes R^{(20)}$ 的约化系数标量因子,利用对称关系 (2.3-10') 我们还求出了 SU_3 群 $R^{(\lambda_1,\mu_1)}\otimes R^{(20)}$ 的约化系数标量因子,所得结果在表 2 中给出。

设 $R^{(\lambda_1\mu_1)}\otimes R^{(\lambda_2\mu_2)}$ 包含 $R^{(\lambda\mu)}f$ 次,我们可以利用公式 (2.3-12) 来规定一种流动指标 n 的选取方法。

将
$$\Gamma_1 = (\lambda_1 \mu_1)$$
, $\Gamma_2 = (\lambda_2 0)$, $\Gamma_3 = (0 \mu_2)$, $\Gamma'' = (\lambda_2 \mu_2)$, $\Gamma' = (\lambda' \mu')$ 代入 (2.3-12) 得

$$\sum_{n} \left\langle (\lambda_{2}\mu_{2})n(\lambda\mu) | (\lambda'\mu')(\lambda\mu) \right\rangle \left\langle \begin{pmatrix} (\lambda_{1}\mu_{1}) & (\lambda_{2}\mu_{2}) \\ e_{1}\Lambda_{1} & e''\Lambda'' \end{pmatrix} = F((\lambda_{1}\mu_{1})(\lambda_{2}0)(0\mu_{2})(\lambda\mu), (\lambda'\mu')(\lambda_{2}\mu_{2})).$$

$$(2.3-14)$$

我们选取 $f \cap 2\lambda' + \mu'$ 最小的 $(\lambda'\mu')$, 并将它们按 μ' 从小到大排列为

$$(\lambda'\mu')_1, (\lambda'\mu')_2, \cdots, (\lambda'\mu')_f$$

我们选取流动指标 n, 使得

系数〈($\lambda_1\mu_2$) $n(\lambda\mu)$ |($\lambda'\mu'$),($\lambda\mu$)〉($i=1,2\cdots f$) 可以由约化系数标量因子的正交归一化性质及相因子的选择所确定。 公式 (2.3-15) 不仅给出了一个确定流动指标 n 的方法,而且它本身也是一个求 $R^{(\lambda_1\mu_1)}\otimes R^{(\lambda_2\mu_2)}$ 约化系数的递推公式。 应用公式 (2.3-15) 可以大大减小计算工作量。作为例子,我们应用公式 (2.3-15) 计算了 $R^{(\lambda_1\mu_1)}\otimes R^{(11)}$ 约化系数标量因子。所得结果在表 2 中给出。

4. SU, 群的不可约张量与 Wigner-Eckart 定理

与 3 维旋转群类似,我们引入 SU3 群的 Γ 秩不可约张量算符 T^{Γ} 7,它与 SU3 群的 8 个无穷小算子满足以下的对易关系.

$$[X_i T_r^{\Gamma}] = \sum_{\gamma'} T_{\gamma'}^{\Gamma} \left\langle \frac{\Gamma}{\gamma'} | X_i | \frac{\Gamma}{\gamma} \right\rangle, \quad i = 1, 2, \dots 8. \quad (2.4-1)$$

容易证明 SU, 群的 8 个无穷小算子就构成了 SU, 群的 (11) 秩不可约张量.

$$T_{3JI1/2\,q}^{(11)} = T_{q},$$

$$T_{000}^{(11)} = -\frac{1}{\sqrt{3}}A,$$

$$T_{01s}^{(11)} = L_{s},$$

$$T_{-3J21/2q}^{(11)} = -V_{q},$$
(2.4-2)

还可以证明,两个不可约张量 T_{i}^{r} , T_{i}^{r} 可以通过以下法则构成一个不可约张量 T_{i}^{rr}

$$T_{\gamma}^{n\Gamma} \equiv \{T^{\Gamma_1}T^{\Gamma_2}\}_{\gamma}^{n\Gamma} = \sum_{\gamma_1\gamma_2} \left\langle \begin{matrix} \Gamma_1 & \Gamma_2 \\ \gamma_1 & \gamma_2 \end{matrix} \middle| \begin{matrix} n\Gamma \\ \gamma \end{matrix} \right\rangle T_{\gamma_1}^{\Gamma_1}T_{\gamma_2}^{\Gamma_2}$$
(2.4-3)

从(2.4-1)出发,容易证明 SU_3 群的不可约张量 T_*^Γ 的矩阵元 $\left\langle \begin{array}{c|c} \Gamma_3 & T_*^\Gamma & \Gamma_1 \\ \gamma_3 & \gamma_1 \end{array} \right\rangle$ 与 SU_3 群

的约化系数 $\left\langle \begin{array}{cc} \Gamma_1 & \Gamma \\ \gamma_1 & \gamma \end{array} \right\rangle$ 满足相同的方程组,于是有

$$\left\langle \frac{\Gamma_3}{\gamma_3} \middle| T_r^{\Gamma} \middle| \frac{\Gamma_1}{\gamma_1} \right\rangle = \sum_{n} \left\langle n\Gamma_3 || T^{\Gamma} || \Gamma_1 \right\rangle \left\langle \frac{\Gamma_1}{\gamma_1} \frac{\Gamma}{\gamma} \middle| \frac{n\Gamma_3}{\gamma_3} \right\rangle \tag{2.4-4}$$

系数 $\langle n\Gamma_3 || T^\Gamma || \Gamma_1 \rangle$ 称为不可约张量 T_1^Γ 的约化矩阵元. 公式(2.4-4)即是 SU_3 群的 Wignre Eckatrt 定理.

表 2 SU, 群约化系数标量因子

$$\left\langle \begin{pmatrix} (\lambda_1 \mu_1) & (\lambda_2 \mu_2) \\ \epsilon_1 \Lambda_1 & \epsilon_2 \Lambda_2 \end{pmatrix} \middle| \begin{matrix} n(\lambda \mu) \\ \epsilon \Lambda \end{matrix} \right\rangle = \left\langle \begin{matrix} p_1 & q_1 & 0 & p_2 & q_2 & 0 \\ a_1 & b_1 & a_1 & b_2 \\ \end{matrix} \middle| \begin{matrix} n & p & q & s \\ a & b \end{matrix} \right\rangle$$

其中
$$\lambda = (p-q), \quad \mu = (q-r), \quad e = p+q+r-\frac{3}{2}(a+b), \quad \Lambda = \frac{1}{2}(a-b)$$

$$(a) \left\langle \begin{array}{ccc|c} p & q & 0 & 1 & 0 & 0 \\ \hline a_1b_1 & a_2b_2 & a & b \end{array} \right\rangle$$

$p' q' p'$ $a_1 b_1 a_2 b_2$	p+1 q 0	p q+1 0	p q 1
a b 0 0	$\sqrt{\frac{(p+1-a)(p+2-b)}{(p+2)(p+1-q)}}$	$-\sqrt{\frac{(a-q)(q+1-b)}{(q+1)(p+1-q)}}$	$\sqrt{\frac{(a+1)b}{(p+2)(q+1)}}$
a b-1 1 0	$-\sqrt{\frac{b(p+1-a)(q+1-b)}{(p+2)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{(a-q)b(p+2-b)}{(q+1)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{(a+1)(q+1-b)(p+2-b)}{(p+2)(q+1)(a+1-b)}}$
a-1 b 1 0	$\sqrt{\frac{(a+1)(a-q)(p+2-b)}{(p+2)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{(a+1)(p+1-a)(q+1-b)}{(q+1)(p+1-q)(a+1-b)}}$	$-\sqrt{\frac{(a-q)(p+1-a)b}{(p+2)(q+1)(a+1-b)}}$

(b)
$$\left\langle \begin{array}{ccc|c} p & q & 0 & 1 & 1 & 0 \\ \hline a_1 & b_1 & & a_2 & b_2 \end{array} \right| \left. \begin{array}{ccc|c} p' & q' & r' \\ \hline a & b \end{array} \right\rangle$$

$p' \ q' \ r'$ $a_1 \ b_1 \ a_2 \ b_2$	p+1 q+1 0	p+1 q 1	p q+1 1
a b-1 1 0	$\sqrt{\frac{(p+1-a)(a-q)b}{(p+2)(q+1)(a+1-b)}}$	$\sqrt{\frac{(a+1)(p+1-a)(q+1-b)}{(q+1)(p+1-q)(a+1-b)}}$	$-\sqrt{\frac{(a+1)(a-q)(p+2-b)}{(p+2)(p+1-q)(a+1-b)}}$
a-1 b 1 0	$\sqrt{\frac{(a+1)(p+2-b)(q+1-b)}{(p+2)(q+1)(a+1-b)}}$	$-\sqrt{\frac{(a-q)b(p+2-b)}{(q+1)(p+1-q)(a+1-b)}}$	$-\sqrt{\frac{(p+1-a)b(q+1-b)}{(p+2)(p+1-q)(a+1-b)}}$
a-1 b-1 1 1	$\sqrt{\frac{(a+1)b}{(p+2)(q+1)}}$	$\sqrt{\frac{(a-q)(q+1-b)}{(q+1)(p+1-q)}}$	$\sqrt{\frac{(p+1-a)(p+2-b)}{(p+2)(p+1-q)}}$

	p+1 q 1	$\sqrt{\frac{2(a+1)(p+1-a)b(p+2-b)}{(p+1)(p+3)(q+1)(p+1-q)}}$	$\frac{(p+3-2b)\sqrt{(a+1)(p+1-a)(q+1-b)}}{\sqrt{(p+1)(p+3)(q+1)(p+1-q)(a+1-b)}}$	$\frac{-(p+1-2a)\sqrt{(a-q)b(p+2-b)}}{\sqrt{(p+1)(p+3)(q+1)(p+1-q)(a+1-b)}}$	$\frac{b}{1-b} - \sqrt{\frac{2(a+1)(p+1-a)(b-1)(p+3-b)(q+1-b)(q+2-b)}{(p+1)(p+3)(q+1)(p+1-q)(a+2-b)(a+1-b)}}$	$ \frac{b)}{-b)} \frac{[(p+1)(a+b)-2(a-1)b]\sqrt{(a-q)(q+1-b)}}{\sqrt{(p+1)(p+3)(q+1)(p+1-q)(a+2-b)(a-b)}} $	<u> </u>	p q+1 1	$-\sqrt{\frac{2(a+1)(a-q)b(q+1-b)}{(p+2)q(q+2)(p+1-q)}}$	$\frac{(q+2-2b)\sqrt{(a+1)(a-q)(p+2-b)}}{\sqrt{(p+2)q(q+2)(p+1-q)(a+1-b)}}$	$\frac{(2a-q)\sqrt{(p+1-a)b(q+1-b)}}{\sqrt{(p+2)q(q+2)(p+1-q)(a+1-b)}}$	$\frac{b)}{-b)} \cdot \sqrt{\frac{2(a+1)(a-q)(b-1)(p+2-b)(p+3-b)(q+2-b)}{(p+2)q(q+2)(p+1-q)(a+2-b)(a+1-b)}}$		-
$\langle a, a', r' \rangle$	9+2 9 0	$\sqrt{\frac{(p+1-a)(p+2-a)(p+2-b)(p+3-b)}{(p+2)(p+3)(p+1-q)(p+2-q)}}$	$-\sqrt{2(p+1-a)(p+2-a)b(p+3-b)(q+1-b)}$ $-\sqrt{(p+2)(p+3)(p+1-q)(p+2-q)(a+1-b)}$	$\sqrt{\frac{2(a+1)(p+2-a)(a-q)(p+2-b)(p+3-b)}{(p+2)(p+3)(p+1-q)(p+2-q)(a+1-b)}}$	$\sqrt{\frac{(p+1-a)(p+2-a)b(b-1)(q+1-b)(q+2-b)}{(p+2)(p+3)(p+1-q)(p+2-q)(a+2-b)(a+1-b)}}$	$-\sqrt{\frac{2(a+1)(p+2-a)(a-q)b(p+3-b)(q+1-b)}{(p+2)(p+3)(p+1-q)(p+2-q)(a+2-b)(a-b)}}$	$\sqrt{\frac{a(a+1)(a-q-1)(a-q)(p+2-b)(p+3-b)}{(p+2)(p+3)(p+1-q)(p+2-q)(a+1-b)(a-b)}}$	p 4+2 0	$\sqrt{\frac{(a-q-1)(a-q)(q+1-b)(q+2-b)}{(q+1)(q+2)(p-q)(p+1-q)}}$	$-\sqrt{\frac{2(a-q-1)(a-q)b(p+2-b)(q+2-b)}{(q+1)(q+2)(p-q)(p+1-q)(a+1-b)}}$	$-\sqrt{\frac{2(a+1)(p+1-a)(a-q)(q+1-b)(q+2-b)}{(q+1)(q+2)(p-q)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{(a-q-1)(a-q)(b-1)b(p+2-b)(p+3-b)}{(q+1)(q+2)(p-q)(p+1-q)(a+2-b)(a+1-b)}}$	$\sqrt{\frac{(a+1)(p+1-a)(a-q-1)b(p+2-b)(q+2-b)}{(q+1)(q+2)(p-q)(p+1-q)(a+2-b)(a-b)}}$	$\sqrt{\frac{a(a+1)(p+1-a)(p+2-a)(q+1-b)(q+2-b)}{(q+1)(q+2)(p-q)(p+1-q)(a+1-b)(a-b)}}$
(c) $\left\langle \begin{array}{cccccccccccccccccccccccccccccccccccc$	a, b, a, b,	a b 0 0.	a b - 1 1 0	a-1 b 1 0	a b-2 2 0	a-1 b-1 2 0	a-2 b 2 0	p' q' r'	0 9	a b-1 1 0	a-1 b 1 0	a b-2 2 0	a-1 $b-1$ 2 0	a-2 b 2 0

p 4 2	$\sqrt{\frac{a(a+1)(b-1)b}{(p+1)(p+2)q(q+1)}}$	$\sqrt{\frac{2a(a+1)(b-1)(p+2-b)(q+1-b)}{(p+1)(p+2)q(q+1)(a+1-b)}}$	$-\sqrt{\frac{2a(p+1-a)(a-q)(b-1)b}{(p+1)(p+2)q(q+1)(a+1-b)}}$	$\sqrt{\frac{a(a+1)(p+2-b)(p+3-b)(q+1-b)(q+2-b)}{(p+1)(p+2)q(q+1)(a+2-b)(a+1-b)}}$	$-\sqrt{\frac{2a(p+1-a)(a-q)(b-1)(p+2-b)(q+1-b)}{(p+1)(p+2)q(q+1)(a+2-b)(a-b)}}$	$\sqrt{\frac{(p+1-a)(p+2-a)(a-q-1)(a-q)(b-1)b}{(p+1)(p+2)q(q+1)(a+1-b)(a-b)}}$
p+1 q+1 0	$-\sqrt{\frac{2(p+1-a)(a-q)(p+2-b)(q+1-b)}{(p+2)(q+1)(p-q)(p+2-q)}}$	$\frac{(p+q+4-2b)\sqrt{(p+1-a)(a-q)b}}{\sqrt{(p+2)(q+1)(p-q)(p+2-q)(a+1-b)}}$	$\frac{(p+q+2-2a)\sqrt{(a+1)(p+2-b)(q+1-b)}}{\sqrt{(p+2)(q+1)(p-q)(p+2-q)(a+1-b)}}$	$-\sqrt{\frac{2(p+1-a)(a-q)(b-1)b(p+3-b)(q+2-b)}{(p+2)(q+1)(p-q)(p+2-q)(a+2-b)(a+1-b)}}$	$\frac{[(p+q+4)(a+b)-2(a+1)b-2(p+2)(q+1)]\sqrt{(a+1)b}}{\sqrt{(p+2)(q+1)(p-q)(p+2-q)(a+2-b)(a-b)}}$	$\sqrt{\frac{2a(a+1)(p+2-a)(a-q-1)(p+2-b)(q+1-b)}{(p+2)(q+1)(p-q)(p+2-q)(a+1-b)(a-b)}}$
p' q' r' a, b, a, b,	a b 0 0	a b-1 10	a-1 b 1 0	a b-2 2 0	a-1 $b-1$ 2 0	a-2 b 2 0

	p+2 q 1	$\sqrt{\frac{(a+1)(p+1-a)(p+2-a)(p+3-b)(q+1-b)}{(p+2)(q+1)(p+1-q)(p+2-q)(a+1-b)}}$	$-\sqrt{\frac{(p+2-a)(a-q)b(p+2-b)(p+3-b)}{(p+2)(q+1)(p+1-q)(p+2-q)(a+1-b)}}$	$-\sqrt{(a+1)(p+1-a)(p+2-a)(b-1)(q+1-b)(q+2-b)}$ $-\sqrt{(p+2)(q+1)(p+1-q)(p+2-q)(a+2-b)(a+1-b)}$	$\frac{(a+b)\sqrt{(p+2-a)(a-q)(p+3-b)(q+1-b)}}{\sqrt{(p+2)(q+1)(p+1-q)(p+2-q)(a+2-b)(a-b)}}$	$-\sqrt{\frac{a(a-q-1)(a-q)b(p+2-b)(p+3-b)}{(p+2)(q+1)(p+1-q)(p+2-q)(a+1-b)(a-b)}}$	$\sqrt{\frac{3(p+2-a)(a-q)(p+3-b)(q+1-b)}{2(p+2)(q+1)(p+1-q)(p+2-q)}}$	$-\sqrt{\frac{(p+2-a)(a-q)(b-1)(q+1-b)(q+2-b)}{(p+2)(q+1)(p+1-q)(p+2-q)(a+1-b)}}$	$\sqrt{\frac{a(a-q-1)(a-q)(p+3-b)(q+1-b)}{(p+2)(q+1)(p+1-q)(p+2-q)(a+1-b)}}$
	p+2 q+1 0	$\sqrt{\frac{(p+1-a)(p+2-a)(a-q)b(p+3-b)}{(p+2)(p+3)(q+1)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{(a+1)(p+2-a)(p+2-b)(p+3-b)(q+1-b)}{(p+2)(p+3)(q+1)(p+1-q)(a+1-b)}}$	$-\sqrt{\frac{(p+1-a)(p+2-a)(a-q)(b-1)b(q+2-b)}{(p+2)(p+3)(q+1)(p+1-q)(a+2-b)(a+1-b)}}$	$\frac{-(2q+2-a-b)\sqrt{(a+1)(p+2-a)b(p+3-b)}}{\sqrt{(p+2)(p+3)(q+1)(p+1-q)(a+2-b)(a-b)}}$	$\sqrt{\frac{a(a+1)(a-q-1)(p+2-b)(p+3-b)(q+1-b)}{(p+2)(p+3)(q+1)(p+1-q)(a+1-b)(a-b)}}$	$\sqrt{\frac{3(a+1)(p+2-a)b(p+3-b)}{(p+2)(p+3)(q+1)(p+1-q)}}$	$-\sqrt{\frac{(a+1)(p+2-a)(b-1)b(q+2-b)}{(p+2)(p+3)(q+1)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{a(a+1)(a-q-1)b(p+3-b)}{(p+2)(p+3)(q+1)(p+1-q)(a+1-b)}}$
(d) $\left\langle \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a b-1 1 0	a-1 b 1 0	a b-2 2 0	0 - 1 - 4 - 1 - 9	a-2 b 2 0	a-1 b-1 1 1	a-1 b-2 2 1	a-2 b-1 2 1

$a_1 b_1 a_2 b_2$	p+1 q+2 0	p q+2 1
a b-1 1 0	$-\sqrt{\frac{(p+1-a)(a-q-1)(a-q)b(q+2-b)}{(p+2)(q+1)(q+2)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{(a+1)(a-q-1)(a-q)(p+2-b)(q+2-b)}{(p+2)(q+1)(p-q)(p+1-q)(a+1-b)}}$
4 - 1 6 1 0	$-\sqrt{\frac{(a+1)(a-q-1)(p+2-b)(q+1-b)(q+2-b)}{(p+2)(q+1)(q+2)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{(p+1-a)(a-q-1)b(q+1-b)(q+2-b)}{(p+2)(q+1)(p-q)(p+1-q)(a+1-b)}}$
a b-2 2 0	$\sqrt{\frac{(p+1-a)(a-q-1)(a-q)(b-1)b(p+3-b)}{(p+2)(q+1)(q+2)(p+1-q)(a+2-b)(a+1-b)}}$	$-\sqrt{\frac{(a+1)(a-q-1)(a-q)(b-1)(p+2-b)(p+3-b)}{(p+2)(q+1)(p-q)(p+1-q)(a+2-b)(a+1-b)}}$
$a-1 \ b-1 \ 2 \ 0$	$\frac{(2p+4-a-b)\sqrt{(a+1)(a-q-1)b(q+2-b)}}{\sqrt{2(p+2)(q+1)(q+2)(p+1-q)(a+2-b)(a-b)}}$	$-\frac{(a+b)\sqrt{(p+1-a)(a-q-1)(p+2-b)(q+2-b)}}{\sqrt{2(p+2)(q+1)(p-q)(p+1-q)(a+2-b)(a-b)}}$
a-2 b 2 0	$\sqrt{\frac{a(a+1)(p+2-a)(p+2-b)(q+1-b)(q+2-b)}{(p+2)(q+1)(q+2)(q+1-q)(a+1-b)(a-b)}}$	$-\sqrt{\frac{a(p+1-a)(p+2-a)b(q+1-b)(q+2-b)}{(p+2)(q+1)(p-q)(p+1-q)(a+1-b)(a-b)}}$
a-1 b-1 1 1	$-\sqrt{\frac{3(a+1)(a-q-1)b(q+2-b)}{2(p+2)(q+1)(q+2)(p+1-q)}}$	$-\sqrt{\frac{3(p+1-a)(a-q-1)(p+2-b)(q+2-b)}{2(p+2)(q+1)(p-q)(p+1-q)}}$
a-1 b-2 2 1	$\sqrt{\frac{(a+1)(a-q-1)(b-1)b(p+3-b)}{(p+2)(q+1)(q+2)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{(p+1-a)(a-q-1)(b-1)(p+2-b)(p+3-b)}{(p+2)(q+1)(p-q)(p+1-q)(a+1-b)}}$
a-2 b-1 2 1	$\sqrt{\frac{a(a+1)(p+2-a)b(q+2-b)}{(p+2)(q+1)(q+2)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{a(p+1-a)(p+2-a)(p+2-b)(q+2-b)}{(p+2)(q+1)(p-q)(p+1-q)(a+1-b)}}$

p q+1 2	$-\sqrt{\frac{a(a+1)(a-q)(b-1)(p+2-b)}{(p+1)(p+2)(q+1)(p+1-q)(a+1-b)}}$	$-\sqrt{\frac{a(p+1-a)(b-1)b(q+1-b)}{(p+1)(p+2)(q+1)(p+1-q)(a+1-b)}}$	$-\sqrt{\frac{a(a+1)(a-q)(p+2-b)(p+3-b)(q+2-b)}{(p+1)(p+2)(q+1)(p+1-q)(a+2-b)(a+1-b)}}$	$\frac{-(2q+2-a-b)\sqrt{a(p+1-a)(b-1)(p+2-b)}}{\sqrt{2(p+1)(p+2)(q+1)(p+1-q)(a+2-b)(a-b)}}$	$\sqrt{\frac{(p+1-a)(p+2-a)(a-q-1)(b-1)b(q+1-b)}{(p+1)(p+2)(q+1)(p+1-q)(a+1-b)(a-b)}}$	$\sqrt{\frac{3a(p+1-a)(b-1)(p+2-b)}{2(p+1)(p+2)(q+1)(p+1-q)}}$	$\sqrt{\frac{a(p+1-a)(p+2-b)(p+3-b)(q+2-b)}{(p+1)(p+2)(q+1)(p+1-q)(a+1-b)}}$	$-\sqrt{\frac{(p+1-a)(p+2-a)(a-q-1)(b-1)(p+2-b)}{(p+1)(p+2)(q+1)(p+1-q)(a+1-b)}}$
p+1 q 2	$\sqrt{\frac{a(a+1)(p+1-a)(b-1)(q+1-b)}{(p+2)q(q+1)(p+1-q)(a+1-b)}}$	$-\sqrt{\frac{a(a-q)(b-1)b(p+2-b)}{(p+2)q(q+1)(p+1-q)(a+1-b)}}$	$\sqrt{\frac{a(a+1)(p+1-a)(p+3-b)(q+1-b)(q+2-b)}{(p+2)q(q+1)(p+1-q)(a+2-b)(a+1-b)}}$	$\frac{(2p+4-a-b)\sqrt{a(a-q)(b-1)(q+1-b)}}{\sqrt{2(p+2)q(q+1)(p+1-q)(a+2-b)(a-b)}}$	$\sqrt{\frac{(p+2-a)(a-q-1)(a-q)b(b-1)(p+2-b)}{(p+2)q(q+1)(p+1-q)(a+1-b)(a-b)}}$	$\sqrt{\frac{3a(a-q)(b-1)(q+1-b)}{2(p+2)q(q+1)(p+1-q)}}$	$\sqrt{\frac{a(a-q)(p+3-b)(q+1-b)(q+2-b)}{(p+2)q(q+1)(p+1-q)(a+1-b)}}$	$-\sqrt{\frac{(a-q-1)(a-q)(b-1)(p+2-b)(q+1-b)}{(p+2)q(q+1)(p+1-q)(a+1-b)}}$
a, b, u, b,	4. 6-1 1 0	a-1 b 1 0	a b-2 2 0	a-1 b-1 2 0	a-2 b 2 0	a-1 b-1 1 1	a-1 b-2 2 1	a-2 b-1 2 1

p+1 q+1 1,	$\frac{\{q(p+2-q)(p-2q-3)-2c_0(q+1-b)\}\sqrt{(a+1)(p+1-a)(a-q)}}{\sqrt{2c_0(p+1)(p+3)q(q+2)(p-q)(p+2-q)(a+1-b)}}$	$\frac{\{q(p+2-q)(p-2q-3)+2c_0(a-q)\}\sqrt{b(p+2-b)(q+1-b)}}{\sqrt{2c_0(p+1)(p+3)q(q+2)(p-q)(p+2-q)(a+1-b)}}$	$\sqrt{\frac{2c_0(a+1)(p+1+a)(a-q)(b-1)(p+3-b)(q+2-b)}{(p+1)(p+3)q(q+2)(p-q)(p+2-q)(a+2-b)(a+1-b)}}$	$ \{q(p+2-q)(p-2q-3)(a+2-b)(a-b)+2c_0q(p+3-a-b)(a+b) -2c_0(2p+4-2q-a-b)a(b-1)\} $ $ \sqrt{4c_0(p+1)(p+3)q(q+2)(p-q)(p+2-q)(a+2-b)(a-b)} $	$-\sqrt{\frac{2c_0a(p+2-a)(a-q-1)b(p+2-b)(q+1-b)}{(p+1)(p+3)q(q+2)(p-q)(p+2-q)(a+1-b)(a-b)}}$	$ \{q(p+2-q)(p+3)(q+2)+q(p+2-q)(p-2q-3)(a+b-q) \\ -2c_0(a-q)(q+1-b)\}\sqrt{3} \\ \sqrt{4c_0(p+1)(p+3)q(q+2)(p-q)(p+2-q)} $	$ \{q(p+2-q)(p-2q-3)+2c_0(a-q)\}\sqrt{(b-1)(p+3-b)(q+2-b)} $ $ \sqrt{2c_0(p+1)(p+3)q(q+2)(p-q)(p+2-q)(a+1-b)} $	$-\frac{\{q(p+2-q)(p-2q-3)-2c_0(q+1-b)\}\sqrt{a(g+2-a)(a-q-1)}}{\sqrt{2c_0(p+1)(p+3)q(q+2)(p-q)(p+2-q)(a+1-b)}}$
p+1 q+1 1,	$\sqrt{\frac{3(a+1)(p+1-a)(a-q)}{2c_0(a+1-b)}}$	$\sqrt{\frac{3b(p+2-b)(g+1-b)}{2c_0(a+1-b)}}$	0	$\sqrt{\frac{3(a+2-b)(a-b)}{4c_0}}$	0	$\frac{-\left[2(p+q+3)-3(a+b)\right]}{\sqrt{4\epsilon_0}}$	$\sqrt{\frac{3(b-1)(p+3-b)(q+2-b)}{2c_0(a+1-b)}}$	$-\sqrt{\frac{3a(p+2-a)(a-q-1)}{2c_0(a+1-b)}}$
a, b, a, b,	b-1 1	a-1 b 1 0	a b-2 2 0	a-1 b-1 2 0	a-2 b 2 0	a-1 b-1 1 1	a-1 b-2 2 1	a-2 b-1 2 1

其中 co=p(p+3)-(p-q)q

(1) SU, 群的 Racah 系数 〈[r(100, 100)r"] r~|[(r, 100)r", 100] r~>

 $\tilde{\Gamma} = p + 2 \quad q \quad 0$

r" r	p+1 q 0
2 0 0	1

ř	_		q		2	n
- 1	=	Ð	q	+	Z	U

Γ'' $p q+1 0$	_
2 0 0	

 $\tilde{\Gamma} = p \quad q \quad 2$

Γ'	p q 1
2 0 0	1

$$\tilde{\Gamma} = p + 1 \quad q + 1 \quad 0$$

r' r'	p+1 q 0	p q+1 0
2 0 0	$\sqrt{\frac{p-q}{2(p+1-q)}}$	$\sqrt{\frac{p+2-q}{2(p+1-q)}}$
1 1 0	$\sqrt{\frac{p+2-q}{2(p+1-q)}}$	$-\sqrt{\frac{p-q}{2(p+1-q)}}$

$\widetilde{\Gamma} = p + 1 \quad q' \quad 1$

Γ"	p + 1 q 0	p 9 1
2 0 0	$\sqrt{\frac{p+1}{2(p+2)}}$	$\sqrt{\frac{p+3}{2(p+2)}}$
1 1 0	$\sqrt{\frac{p+3}{2(p+2)}}$	$-\sqrt{\frac{p+1}{2(p+2)}}$
~ :		1

$\widetilde{\Gamma} = p \quad q + 1 \quad 1$

Γ''	p q + 1 0	p q 1
2 0 0	$\sqrt{\frac{q}{2(q+1)}}$	$\sqrt{\frac{q+2}{2(q+1)}}$
1 1 0	$\sqrt{\frac{q+2}{2(q+1)}}$	$-\sqrt{\frac{q}{2(q+1)}}$

(f) SU, 群的 Racah 系数

 $\langle [\Gamma_i(110, 100)\Gamma'']\widetilde{\Gamma}|[(\Gamma, 110)\Gamma', 100]\widetilde{\Gamma}\rangle$

$$\tilde{T} = p + 2 \quad q + 1 \quad 0$$

Γ''	p+1 q+1 0
2 1 0	ī

 $\widetilde{\Gamma} = p + 2 \quad q \quad 1$

Γ"	p+1 q 1
2 1 0	1

$\widetilde{\Gamma} = p + 1 q + 2 0$		$\tilde{\Gamma} = p q + 2 1$	
Γ''	p+1 $q+1$ 0	r' ,	p q+1 1
2 1 0	1	2 1 0	1
$\tilde{\Gamma} = p + 1 q$	2	$\widetilde{\Gamma} = p q+1 2$	
Γ''	p+1 q 1	Γ"	p q+1 1
2 1 0	1	2 1 0	1
$\widetilde{\Gamma} = p + 1 q + 1$	1		
r' r'	p+1 $q+1$ 0	p+1 q 1	P q+1 1
1 1 1	$\sqrt{\frac{(p+3)(q+2)}{3(p+2)(q+1)}}$	$-\sqrt{\frac{q(p+2-q)}{3(q+1)(p+1-q)}}$	$\sqrt{\frac{(p+1)(p-q)}{3(p+2)(p+1-q)}}$
2 1 0,	$\frac{(p+q)\sqrt{(p+3)(q+2)}}{\sqrt{6c_0(p+2)(q+1)}}$	$\frac{-(p-2q-3)\sqrt{q(p+2-q)}}{\sqrt{6c_0(q+1)(p+1-q)}}$	$\frac{-(2p+6-q)\sqrt{(p+1)(p-q)}}{\sqrt{6c_0(p+2)(p+1-q)}}$
2 1 02	$\sqrt{\frac{(p+1)q(p-q)(p+2-q)}{2c_0(p+2)(q+1)}}$	$\sqrt{\frac{(p+1)(p+3)(q+2)}{(p-q)}} \sqrt{\frac{(p-1)(p+3)(q+2)}{\sqrt{2c_0(q+1)(p+1-q)}}}$	$1 \cdot (p+2-q)$
$c_0 = p(p+3) - ($	p-q)q		

参考文献

- [1] G. Racah, Group Theory and Spectroscopy, Princeton, (1951).
- [2] R. E. Behrends et al., Rev. Mod. Phys., 34 (1962), 1.
- [3] A. Salam, Theoretical Physics, p. 173, Viena, (1963).
- [4] J. P. Elliott et al., Proc. Roy. Soc., A277 (1963), 557.
- [5] A. Arima et al., Nucl. Phys., A138 (1969), 273., A162 (1971.), 605.
- [6] K. T. Hecht, Nucl. Phys., 63 (1965), 177.
- [7] G. Gneuss et al., Nucl. Phys., A171 (1971), 449.
- [8] B. H. Flowers et al., Proc. Phys. Soc., 84 (1964), 139.
- [9] A. R. Edmonds, Angular Momentum in Quantum Mechanics, Priceton, (1957).
- [10] 孙洪洲等,物理学报 21(1965),56.
- [11] 杨国桢等,北京大学学报(自然科学版) 10(1964),269。
 - [12] S. McDonald et al., J. Math. Phys., 14 (1973), 1248.
 - [13] J. P. Draayer et al., J. Math. Phys., 14 (1973). 1904.
 - [14] E. M. Haacke et al., J. Math. Phys., 17 (1976), 2040.
 - [15] 侯伯字,中国科学,14(1965),367。
 - [16] J. J. De Swart, Rev. Mod. Phys., 35 (1963), 916.
 - [17] L. C. Biedenharn et al., J. Math. Phys., 4 (1963), 1449., 4 (1964), 1723., 4 (1964), 1730.
 - [18] 陈金全等, 高能物理与核物理, 3(1979), 216.

ON THE IRREDUCIBLE REPRESENTATIONS OF THE COMPACT SIMPLE LIE GROUPS OF RANK 2 (I)

Sun Hung-zhou
(Peking University)

ABSTRACT

In this paper, we analyse the commutation relations of the infinitesimal operators of the group SU_s and find that the eight infinitesimal operators of the group SU_s can be written as a scalar operator A, three angular momentum operators (L₁, L₀, L₋₁,) and two sets of the irreducible tensor operators of rank $\frac{1}{2}$, $(T_{\pm \frac{1}{2}}, V_{\pm \frac{1}{2}})$. By means of the commutation relations of these operators, all irreducible representations of the group SU_s can be easily obtained.

In this paper, the matrices corresponding to these operators in the irreducible representation $(\lambda \mu)$, are given; therefore the irreducible representation and its representation space $R^{(\lambda\mu)}$ are completely defined. Besides, a method for calculating the scalar factors of the reduction coefficients and the symmetric relations of those factors are also given. As examples, the scalar factors of the reduction coefficients of $(\lambda\mu) \otimes (10)$, $(\lambda\mu) \otimes (01)$, $(\lambda\mu) \otimes (20)$ and $(\lambda\mu) \otimes (11)$ are calculated.

In the last part of this paper, we define the irreducible tensor operators of the group SU_* and prove the corresponding Wigner-Eckart theory.

The method used in the discussion of the group SU_s may be extended to all of the compact simple Lie groups of rank 2 and we shall discuss them in two succeeding papers.