• [1]

    N. Abas, A. Kalair, N. Khan, Rev. fossil fuels and future energy technologies, Futures, 69: 1–49 (2015). https://doi.org/10.1016/j.futures.2015.03.003

  • [2]

    S. Koohi-Fayegh, M. A. Rosen, A review of renewable energy options, applications, facilitating technologies and recent developments, Eur. J. Sustain. Dev. Res. , 4(4), em0138 (2020).

  • [3]

    B. W. Brook, C. J. A. Bradshaw, Key role for nuclear energy in global biodiversity conservation, Conserv. Biol. , 29: 702–712 (2015). https://doi.org/10.1111/cobi.12433

  • [4]

    IAEA Power Reactor Information System (PRIS). https://pris.iaea.org/signin/

  • [5]

    ITER Organization, https://www.iter.org/proj/inafewlines (2023).

  • [6]

    Z. G. Ge, Y. J. Chen, Current status and development of nuclear data research in China, At. Energ. Sci. Technol. , 53(10) (2019). https://doi.org/10.7538/yzk.2019.53.10.1742

  • [7]

    A. J. Koning, D. Rochman, Modern nuclear data evaluation with the TALYS code system, Nucl. Data Sheets, 113(12): 2841–2934 (2012). https://doi.org/10.1016/j.nds.2012.11.002

  • [8]

    Y. -B. Nie, J. Ren, et al. , Benchmark experiment on slab beryllium with D–T neutrons for validation of evaluated nuclear data, Fusion Eng. Des. , 105: 8 (2016). https://doi.org/10.1016/j.fusengdes.2016.01.049

  • [9]

    Y. -B. Nie, J. Ren, X. C. Ruan, et al. , Benchmarking of evaluated nuclear data for iron by TOF experiment with slab samples, Fusion Eng. Des. , 145: 40–45 (2019). https://doi.org/10.1016/j.fusengdes.2019.05.021

  • [10]

    Q. Zhao, Y. -B. Nie, Y. -Y. Ding, et al. , Measurement and simulation of leakage neutron spectra from Fe spheres bombarded with 14 MeV neutrons, Nucl. Sci. Tech. , 34: 182 (2023). https://doi.org/10.1007/s41365-023-01329-6

  • [11]

    L. Rubyl, R. B. Crawford, Anisotropy factors for D(d, n)^3He and T(d, n)^4He reactions, Nucl. Instrum. Meth. , (1963). https://doi.org/10.1016/0029-554X(63)90358-6

  • [12]

    L. B. Fontana, J. Yu, M. P. Short, et al., Design and modeling of Cf-252-based neutron irradiator for NAA, Appl. Radiat. Isot. , 225, 111990 (2025).

  • [13]

    D. Neudecker, O. Cabellos, A. R. Clark, et al., Which nuclear data can be validated with LLNL pulsed-sphere experiments? Ann. Nucl. Energy, 159, 108345 (2021).

  • [14]

    C. Ichihara, I. Kimura, J. Yamamoto, S. A. Hayashi, A. Takahashi, Measurement and analysis of leakage neutron spectrum from silicon sphere with 14 MeV neutrons, J. Nucl. Sci. Technol. , 44(1): 29–35 (2007).

  • [15]

    S. C. Frankle, Criticality Benchmark Results Using Various MCNP Data Libraries, OSTI Report (1999). https://www.osti.gov/biblio/9446

  • [16]

    A. D. Carlson, The neutron cross section standards, evaluations and applications, Metrologia, 48, S328 (2011).

  • [17]

    W. Mannhart, Status of the Cf-252 fission neutron spectrum evaluation with regard to recent experiments, Report (1989).

  • [18]

    J. W. Boldeman, D. Culley, R. J. Cawley, The fission neutron spectrum from spontaneous fission of 252Cf, in Proc. Int. Conf. Neutron Physics and Nuclear Data for Reactors and Other Applied Purposes, pp. 916–921 (OECD, 1978).

  • [19]

    J. W. Meadows, 252Cf fission neutron spectrum from 0.003 to 15.0 MeV, Phys. Rev. , 157(4): 1076–1082 (1967). https://doi.org/10.1103/PhysRev.157.1076

  • [20]

    A. B. Smith, P. R. Fields, J. H. Roberts, Spontaneous fission neutron spectrum of 252Cf, Phys. Rev. , 108(2): 411–413 (1957). https://doi.org/10.1103/PhysRev.108.411

  • [21]

    N. V. Kornilov, S. M. Grimes, Mechanism of fission neutron emission: new experimental arguments, Nucl. Sci. Eng. , 194(10): 927–937 (2020).

  • [22]

    S. P. Simakov, A. A. Androsenko, P. A. Androsenko, et al. , Neutron leakage spectra from Be, Al, Fe, Ni, Pb, LiPb, Bi, U and Th spheres with T(d, n) and 252Cf neutron sources, North Holland (1993).

  • [23]

    D. A. Brown, M. B. Chadwick, R. Capote, et al. , ENDF/B-VIII. 0: The 8th major release of the nuclear reaction data library, Nucl. Data Sheets, 148: 1–142 (2018).

  • [24]

    Z. Ge, R. Xu, H. Wu, et al. , CENDL-3.2: The new Chinese evaluated nuclear data library, EPJ Web Conf. , 239: 09001 (2020).

  • [25]

    O. Cabellos, F. Alvarez-Velarde, M. Angelone, et al., Benchmarking and validation within JEFF project, EPJ Web Conf. , 146, 06004 (2017).

  • [26]

    O. Iwamoto, N. Iwamoto, S. Kunieda, et al. , Japanese evaluated nuclear data library version 5: JENDL-5, J. Nucl. Sci. Technol. , 60(1): 1–60 (2023).

  • [27]

    National Health Commission of China, Basic standards for protection against ionizing radiation and radiation source safety [EB/OL]. (Accessed 2025-03-05). http://www.nhc.gov.cn/wjw/pcrb/201410/5fffe01da4634747918d15662d3d22aeshtml

  • [28]

    A. Tomanin, J. Paepen, P. Schillebeeckx, et al. , Characterization of a cubic EJ309 liquid scintillator detector, Nucl. Instrum. Meth. A, 756: 45–54 (2014).

  • [29]

    F. Ferrulli, M. Labalme, M. Silari, Investigation of CLYC-6 and CLYC-7 detectors, Nucl. Instrum. Meth. A, 1029, 166460 (2022).

  • [30]

    A. Giaz, N. Blasi, C. Boiano, et al. , Fast neutron measurements with 6Li/7Li-enriched CLYC, Nucl. Instrum. Meth. A, 825: 51–61 (2016).

  • [31]

    G. R. Shen, Neutron Time-of-Flight Method and Its Applications, Beijing: Atomic Energy Press (2007).

  • [32]

    D. Cester, M. Lunardon, G. Nebbia, et al. , Pulse shape discrimination with fast digitizers, Nucl. Instrum. Meth. A, 748: 33–38 (2014).

  • [33]

    CAEN, UM5960 Compass User Manual [EB/OL]. https://www.caen.it/

  • [34]

    J. F. Briesmeister, MCNP – A General Monte Carlo N-Particle Transport Code, LA-13709-M, LANL (2000).

  • [35]

    S. Y. Xu, B. J. Liu, Issues in Monte Carlo calculations in nuclear technology, Nucl. Tech. , 7: 597–600 (2007).

  • [36]

    A. J. Grievson, Time-of-Flight Spectrometry of the Spontaneous Fission Neutrons of 244Cm and 252Cf Using EJ-309F Liquid Scintillators, Ph. D. Thesis, Lancaster University (2020).